Seungkyun Han (Chungnam National University), Jinsoo Jang (Chungnam National University)

We propose a solution, MyTEE, that enables a trusted execution environment (TEE) to be built even in worst-case environments wherein major hardware security primitives (e.g., ARM TrustZone extensions for memory access control) are absent. Crafting page tables for memory isolation, filtering DMA packets, and enabling secure IO exist at the core of MyTEE. Particularly for secure IO, we shield the IO buffers and memory-mapped registers of the controllers and securely escalate the privilege of the partial code block of the device drivers to provide permission to access the protected objects. By doing so, the need to host the device driver in the TEE (in whole or in part), which can potentially introduce a new attack surface, is exempted. The proof-of-concept (PoC) of MyTEE is implemented on the Raspberry Pi 3 board, which does not support most of the important security primitives for building the TEE. Additionally, three secure IO examples with the hardware TPM, framebuffer, and USB keyboard are demonstrated to show the feasibility of our approach.

View More Papers

Detection and Resolution of Control Decision Anomalies

Prof. Kang Shin (Kevin and Nancy O'Connor Professor of Computer Science, and the Founding Director of the Real-Time Computing Laboratory (RTCL) in the Electrical Engineering and Computer Science Department at the University of Michigan)

Read More

Machine Unlearning of Features and Labels

Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Read More

Operationalizing Cybersecurity Research Ethics Review: From Principles and Guidelines...

Dennis Reidsma, Jeroen van der Ham, and Andrea Continella (University of Twente)

Read More

How to Count Bots in Longitudinal Datasets of IP...

Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Read More