Tommaso Frassetto (Technical University of Darmstadt), Patrick Jauernig (Technical University of Darmstadt), David Koisser (Technical University of Darmstadt), David Kretzler (Technical University of Darmstadt), Benjamin Schlosser (Technical University of Darmstadt), Sebastian Faust (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Smart contracts enable users to execute payments depending on complex program logic. Ethereum is the most notable example of a blockchain that supports smart contracts leveraged for countless applications including games, auctions and financial products. Unfortunately, the traditional method of running contract code on-chain is very expensive, for instance, on the Ethereum platform, fees have dramatically increased, rendering the system unsuitable for complex applications. A prominent solution to address this problem is to execute code off-chain and only use the blockchain as a trust anchor. While there has been significant progress in developing off-chain systems over the last years, current off-chain solutions suffer from various drawbacks including costly blockchain interactions, lack of data privacy, huge capital costs from locked collateral, or supporting only a restricted set of applications.

In this paper, we present POSE—a practical off-chain protocol for smart contracts that addresses the aforementioned shortcomings of existing solutions. POSE leverages a pool of Trusted Execution Environments (TEEs) to execute the computation efficiently and to swiftly recover from accidental or malicious failures. We show that POSE provides strong security guarantees even if a large subset of parties is corrupted. We evaluate our proof-of-concept implementation with respect to its efficiency and effectiveness.

View More Papers

Analyzing the Patterns and Behavior of Users When Detecting...

Nick Ceccio, Naman Gupta, Majed Almansoori, Rahul Chatterjee (University of Wisconsin-Madison)

Read More

VICEROY: GDPR-/CCPA-compliant Enforcement of Verifiable Accountless Consumer Requests

Scott Jordan (University of California, Irvine), Yoshimichi Nakatsuka (University of California, Irvine), Ercan Ozturk (University of California, Irvine), Andrew Paverd (Microsoft Research), Gene Tsudik (University of California, Irvine)

Read More

He-HTLC: Revisiting Incentives in HTLC

Sarisht Wadhwa (Duke University), Jannis Stoeter (Duke University), Fan Zhang (Duke University, Yale University), Kartik Nayak (Duke University)

Read More

OptRand: Optimistically Responsive Reconfigurable Distributed Randomness

Adithya Bhat (Purdue University), Nibesh Shrestha (Rochester Institute of Technology), Aniket Kate (Purdue University), Kartik Nayak (Duke University)

Read More