Jung-Woo Chang (University of California San Diego), Mojan Javaheripi (University of California San Diego), Seira Hidano (KDDI Research, Inc.), Farinaz Koushanfar (University of California San Diego)

Video compression plays a crucial role in video streaming and classification systems by maximizing the end-user quality of experience (QoE) at a given bandwidth budget.

In this paper, we conduct the first systematic study for adversarial attacks on deep learning-based video compression and downstream classification systems. Our attack framework, dubbed RoVISQ, manipulates the Rate-Distortion (R-D) relationship of a video compression model to achieve one or both of the following goals: (1) increasing the network bandwidth, (2) degrading the video quality for end-users. We further devise new objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression.

We empirically show the resilience of RoVISQ attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets show RoVISQ attacks deteriorate peak signal-to-noise ratio by up to 5.6dB and the bit-rate by up to ~ 2.4 times while achieving over 90% attack success rate on a downstream classifier. Our user study further demonstrates the effect of RoVISQ attacks on users’ QoE. We provide several example attacked videos used in our survey on https://sites.google.com/view/demo-of-rovisq/home.

View More Papers

Operationalizing Cybersecurity Research Ethics Review: From Principles and Guidelines...

Dennis Reidsma, Jeroen van der Ham, and Andrea Continella (University of Twente)

Read More

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder...

Wenjie Qu (Huazhong University of Science and Technology), Jinyuan Jia (University of Illinois Urbana-Champaign), Neil Zhenqiang Gong (Duke University)

Read More

The “Beatrix” Resurrections: Robust Backdoor Detection via Gram Matrices

Wanlun Ma (Swinburne University of Technology), Derui Wang (CSIRO’s Data61), Ruoxi Sun (The University of Adelaide & CSIRO's Data61), Minhui Xue (CSIRO's Data61), Sheng Wen (Swinburne University of Technology), Yang Xiang (Digital Research & Innovation Capability Platform, Swinburne University of Technology)

Read More

Your Router is My Prober: Measuring IPv6 Networks via...

Long Pan (Tsinghua University), Jiahai Yang (Tsinghua University), Lin He (Tsinghua University), Zhiliang Wang (Tsinghua University), Leyao Nie (Tsinghua University), Guanglei Song (Tsinghua University), Yaozhong Liu (Tsinghua University)

Read More