Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Estimating the size of a botnet is one of the most basic and important queries one can make when trying to understand the impact of a botnet. Surprisingly and unfortunately, this seemingly simple task has confounded many measurement efforts. While it may seem tempting to simply count the number of IP addresses observed to be infected, it is well-known that doing so can lead to drastic overestimates, as ISPs commonly assign new IP addresses to hosts. As a result, estimating the number of infected hosts given longitudinal datasets of IP addresses has remained an open problem.

In this paper, we present a new data analysis technique, CARDCount, that provides more accurate size estimations by accounting for IP address reassignments. CARDCount can be applied on longer windows of observations than prior approaches (weeks compared to hours), and is the first technique of its kind to provide confidence intervals for its size estimations. We evaluate CARDCount on three real world datasets and show that it performs equally well to existing solutions on synthetic ideal situations, but drastically outperforms all previous work in realistic botnet situations. For the Hajime and Mirai botnets, we estimate that CARDCount, is 51.6% and 69.1% more accurate than the state of the art techniques when estimating the botnet size over a 28-day window.

View More Papers

RAI2: Responsible Identity Audit Governing the Artificial Intelligence

Tian Dong (Shanghai Jiao Tong University), Shaofeng Li (Shanghai Jiao Tong University), Guoxing Chen (Shanghai Jiao Tong University), Minhui Xue (CSIRO's Data61), Haojin Zhu (Shanghai Jiao Tong University), Zhen Liu (Shanghai Jiao Tong University)

Read More

RCABench: Open Benchmarking Platform for Root Cause Analysis

Keisuke Nishimura, Yuichi Sugiyama, Yuki Koike, Masaya Motoda, Tomoya Kitagawa, Toshiki Takatera, Yuma Kurogome (Ricerca Security, Inc.)

Read More

“This is different from the Western world”: Understanding Password...

Aniqa Alam, Elizabeth Stobert, Robert Biddle (Carleton University)

Read More

BARS: Local Robustness Certification for Deep Learning based Traffic...

Kai Wang (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Wenqi Chen (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia Yin (Tsinghua University)

Read More