Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key Laboratory of ASIC & System, Fudan University)

Tesla Model 3 has equipped with Phone Keys and Key Cards in addition to traditional key fobs for better driving experiences. These new features allow a driver to enter and start the vehicle without using a mechanical key through a wireless authentication process between the vehicle and the key. Unlike the requirements of swiping against the car for Key Cards, the Tesla mobile app’s Phone Key feature can unlock a Model 3 while your smartphone is still in a pocket or bag.

In this paper, we performed a detailed security analysis aiming at Tesla keys, especially for Key Cards and Phone Keys. Starting with reverse engineering the mobile application and sniffing the communication data, we reestablished pairing and authentication protocols and analyzed their potential issues. Missing the certificate verification allows an unofficial Key Card to work as an official one. Using these third-party products may lead to serious security problems. Also, the weaknesses of the current protocol lead to a man-in-the-middle (MitM) attack through a Bluetooth channel. The MitM attack is an improved relay attack breaking the security of the authentication procedures for Phone Keys. We also developed an App named TESmLA installed on customized Android devices to complete the proof-of-concept. The attackers can break into Tesla Model 3 and drive it away without the awareness of the car owner. Our results bring into question the security of Passive Keyless Entry and Start (PKES) and Bluetooth implementations in security-critical applications. To mitigate the security problems, we discussed the corresponding countermeasures and feasible secure scheme in the future.

View More Papers

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

Analyzing the Patterns and Behavior of Users When Detecting...

Nick Ceccio, Naman Gupta, Majed Almansoori, Rahul Chatterjee (University of Wisconsin-Madison)

Read More

Kids, Cats, and Control: Designing Privacy and Security Dashboard...

Jacob Abbott (Indiana University), Jayati Dev (Indiana University), DongInn Kim (Indiana University), Shakthidhar Reddy Gopavaram (Indiana University), Meera Iyer (Indiana University), Shivani Sadam (Indiana University) , Shirang Mare (Western Washington University), Tatiana Ringenberg (Purdue University), Vafa Andalibi (Indiana University), and L. Jean Camp(Indiana University)

Read More

Real Threshold ECDSA

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Hoover H. F. Yin (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More