Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

We present ProbFlow, a probabilistic programming approach for estimating relay capacities in the Tor network. We refine previously derived probabilistic model of the network to take into account more of the complexity of the real-world Tor network. We use this model to perform inference in a probabilistic programming language called NumPyro which allows us to overcome the analytical barrier present in purely analytical approach. We integrate the implementation of ProbFlow to the current implementation of capacity estimation algorithms in the Tor network. We demonstrate the practical benefits of ProbFlow by simulating it in flow-based Python simulator and packet-based Shadow simulations, the highest fidelity simulator available for the Tor network. In both simulators, ProbFlow provides significantly more accurate estimates that results in improved user performance, with average download speeds increasing by 25% in the Shadow simulations.

View More Papers

REDsec: Running Encrypted Discretized Neural Networks in Seconds

Lars Wolfgang Folkerts (University of Delaware), Charles Gouert (University of Delaware), Nektarios Georgios Tsoutsos (University of Delaware)

Read More

Copy-on-Flip: Hardening ECC Memory Against Rowhammer Attacks

Andrea Di Dio (Vrije Universiteit Amsterdam), Koen Koning (Intel), Herbert Bos (Vrije Universiteit Amsterdam), Cristiano Giuffrida (Vrije Universiteit Amsterdam)

Read More

Investigating User Behaviour Towards Fake News on Social Media...

Yasmeen Abdrabou (University of the Bundeswehr Munich), Elisaveta Karypidou (LMU Munich), Florian Alt (University of the Bundeswehr Munich), Mariam Hassib (University of the Bundeswehr Munich)

Read More