Hussein Darir (University of Illinois Urbana-Champaign), Geir Dullerud (University of Illinois Urbana-Champaign), Nikita Borisov (University of Illinois Urbana-Champaign)

We present ProbFlow, a probabilistic programming approach for estimating relay capacities in the Tor network. We refine previously derived probabilistic model of the network to take into account more of the complexity of the real-world Tor network. We use this model to perform inference in a probabilistic programming language called NumPyro which allows us to overcome the analytical barrier present in purely analytical approach. We integrate the implementation of ProbFlow to the current implementation of capacity estimation algorithms in the Tor network. We demonstrate the practical benefits of ProbFlow by simulating it in flow-based Python simulator and packet-based Shadow simulations, the highest fidelity simulator available for the Tor network. In both simulators, ProbFlow provides significantly more accurate estimates that results in improved user performance, with average download speeds increasing by 25% in the Shadow simulations.

View More Papers

Browser Permission Mechanisms Demystified

Kazuki Nomoto (Waseda University), Takuya Watanabe (NTT Social Informatics Laboratories), Eitaro Shioji (NTT Social Informatics Laboratories), Mitsuaki Akiyama (NTT Social Informatics Laboratories), Tatsuya Mori (Waseda University/NICT/RIKEN AIP)

Read More

PISE: Protocol Inference using Symbolic Execution and Automata Learning

Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

Read More

Fusion: Efficient and Secure Inference Resilient to Malicious Servers

Caiqin Dong (Jinan University), Jian Weng (Jinan University), Jia-Nan Liu (Jinan University), Yue Zhang (Jinan University), Yao Tong (Guangzhou Fongwell Data Limited Company), Anjia Yang (Jinan University), Yudan Cheng (Jinan University), Shun Hu (Jinan University)

Read More