Hadi Abdullah (Visa Research), Aditya Karlekar (University of Florida), Saurabh Prasad (University of Florida), Muhammad Sajidur Rahman (University of Florida), Logan Blue (University of Florida), Luke A. Bauer (University of Florida), Vincent Bindschaedler (University of Florida), Patrick Traynor (University of Florida)

Audio CAPTCHAs are supposed to provide a strong defense for online resources; however, advances in speech-to-text mechanisms have rendered these defenses ineffective. Audio CAPTCHAs cannot simply be abandoned, as they are specifically named by the W3C as important enablers of accessibility. Accordingly, demonstrably more robust audio CAPTCHAs are important to the future of a secure and accessible Web. We look to recent literature on attacks on speech-to-text systems for inspiration for the construction of robust, principle-driven audio defenses. We begin by comparing 20 recent attack papers, classifying and measuring their suitability to serve as the basis of new "robust to transcription" but "easy for humans to understand" CAPTCHAs. After showing that none of these attacks alone are sufficient, we propose a new mechanism that is both comparatively intelligible (evaluated through a user study) and hard to automatically transcribe (i.e., $P({rm transcription}) = 4 times 10^{-5}$). We also demonstrate that our audio samples have a high probability of being detected as CAPTCHAs when given to speech-to-text systems ($P({rm evasion}) = 1.77 times 10^{-4}$). Finally, we show that our method is robust to WaveGuard, a popular mechanism designed to defeat adversarial examples (and enable ASRs to output the original transcript instead of the adversarial one). We show that our method can break WaveGuard with a 99% success rate. In so doing, we not only demonstrate a CAPTCHA that is approximately four orders of magnitude more difficult to crack, but that such systems can be designed based on the insights gained from attack papers using the differences between the ways that humans and computers process audio.

View More Papers

DARWIN: Survival of the Fittest Fuzzing Mutators

Patrick Jauernig (Technical University of Darmstadt), Domagoj Jakobovic (University of Zagreb, Croatia), Stjepan Picek (Radboud University and TU Delft), Emmanuel Stapf (Technical University of Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

I Still Know What You Watched Last Sunday: Privacy...

Carlotta Tagliaro (TU Wien), Florian Hahn (University of Twente), Riccardo Sepe (Guess Europe Sagl), Alessio Aceti (Sababa Security SpA), Martina Lindorfer (TU Wien)

Read More

Folk Models of Misinformation on Social Media

Filipo Sharevski (DePaul University), Amy Devine (DePaul University), Emma Pieroni (DePaul University), Peter Jachim (DePaul University)

Read More

Measuring Messengers: Analyzing Infrastructures and Message Timings to Extract...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum)

Read More