Yugeng Liu (CISPA Helmholtz Center for Information Security), Zheng Li (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yun Shen (Netapp), Yang Zhang (CISPA Helmholtz Center for Information Security)

Dataset distillation has emerged as a prominent technique to improve data efficiency when training machine learning models. It encapsulates the knowledge from a large dataset into a smaller synthetic dataset. A model trained on this smaller distilled dataset can attain comparable performance to a model trained on the original training dataset. However, the existing dataset distillation techniques mainly aim at achieving the best trade-off between resource usage efficiency and model utility. The security risks stemming from them have not been explored. This study performs the first backdoor attack against the models trained on the data distilled by dataset distillation models in the image domain. Concretely, we inject triggers into the synthetic data during the distillation procedure rather than during the model training stage, where all previous attacks are performed. We propose two types of backdoor attacks, namely NAIVEATTACK and DOORPING. NAIVEATTACK simply adds triggers to the raw data at the initial distillation phase, while DOORPING iteratively updates the triggers during the entire distillation procedure. We conduct extensive evaluations on multiple datasets, architectures, and dataset distillation techniques. Empirical evaluation shows that NAIVEATTACK achieves decent attack success rate (ASR) scores in some cases, while DOORPING reaches higher ASR scores (close to 1.0) in all cases. Furthermore, we conduct a comprehensive ablation study to analyze the factors that may affect the attack performance. Finally, we evaluate multiple defense mechanisms against our backdoor attacks and show that our attacks can practically circumvent these defense mechanisms.

View More Papers

StealthyIMU: Stealing Permission-protected Private Information From Smartphone Voice Assistant...

Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Read More

Death By A Thousand COTS: Disrupting Satellite Communications using...

Frederick Rawlins, Richard Baker and Ivan Martinovic (University of Oxford) Presenter: Frederick Rawlins

Read More

WIP: Infrared Laser Reflection Attack Against Traffic Sign Recognition...

Takami Sato (University of California, Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot...

Hossein Fereidooni (Technical University of Darmstadt), Jan Koenig (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Marco Chilese (Technical University of Darmstadt), Bora Goekbakan (KOBIL, Germany), Moritz Finke (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More