Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Virtual Reality (VR) has shown promising potential in many applications, such as e-business, healthcare, and social networking. Rich information regarding users' activities and online accounts is stored in VR devices. If {they are} carelessly unattended, adversarial access will cause data breaches and other critical consequences. Practical user authentication schemes for VR devices are in dire need. Current solutions, including passwords, digital PINs, and pattern locks, mostly follow conventional approaches for general personal devices. They have been criticized for deficits in both security and usability. In this work, we propose SoundLock, a novel user authentication scheme for VR devices using auditory-pupillary response as biometrics. During authentication, auditory stimuli are presented to the user via the VR headset. The corresponding pupillary response is captured by the integrated eye tracker. User's legitimacy is then determined by comparing the response with the template generated during the enrollment stage. To strike a balance between security and usability in the scheme design, an optimization problem is formulated. Due to its non-linearity, a two-stage heuristic algorithm is proposed to solve it efficiently. The solution provides necessary guidance for selecting effective auditory stimuli and determining their corresponding lengths. We demonstrate through extensive in-field experiments that SoundLock outperforms state-of-the-art biometric solutions with FAR (FRR) as low as 0.76% (0.91%) and is well received among participants in the user study.

View More Papers

Kids, Cats, and Control: Designing Privacy and Security Dashboard...

Jacob Abbott (Indiana University), Jayati Dev (Indiana University), DongInn Kim (Indiana University), Shakthidhar Reddy Gopavaram (Indiana University), Meera Iyer (Indiana University), Shivani Sadam (Indiana University) , Shirang Mare (Western Washington University), Tatiana Ringenberg (Purdue University), Vafa Andalibi (Indiana University), and L. Jean Camp(Indiana University)

Read More

Lightning Community Shout-Outs to:

(1) Jonathan Petit, Secure ML Performance Benchmark (Qualcomm) (2) David Balenson, The Road to Future Automotive Research Datasets: PIVOT Project and Community Workshop (USC Information Sciences Institute) (3) Jeremy Daily, CyberX Challenge Events (Colorado State University) (4) Mert D. Pesé, DETROIT: Data Collection, Translation and Sharing for Rapid Vehicular App Development (Clemson University) (5) Ning…

Read More

Enhanced Vehicular Roll-Jam Attack using a Known Noise Source

Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

Read More