Shujiang Wu (Johns Hopkins University), Pengfei Sun (F5, Inc.), Yao Zhao (F5, Inc.), Yinzhi Cao (Johns Hopkins University)

Browser fingerprints, while traditionally being used for web tracking, have recently been adopted more and more often for defense or detection of various attacks targeting real-world websites. Faced with these situations, adversaries also upgrade their weapons to generate their own fingerprints---defined as adversarial fingerprints---to bypass existing defense or detection. Naturally, such adversarial fingerprints are different from benign ones from user browsers because they are generated intentionally for defense bypass. However, no prior works have studied such differences in the wild by comparing adversarial with benign fingerprints let alone how adversarial fingerprints are generated.

In this paper, we present the first billion-scale measurement study of browser fingerprints collected from 14 major commercial websites (all ranked among Alexa/Tranco top 10,000). We further classify these fingerprints into either adversarial or benign using a learning-based, feedback-driven fraud and bot detection system from a major security company, and then study their differences. Our results draw three major observations: (i) adversarial fingerprints are significantly different from benign ones in many metrics, e.g., entropy, unique rate, and evolution speed, (ii) adversaries are adopting various tools and strategies to generate adversarial fingerprints, and (iii) adversarial fingerprints vary across different attack types, e.g., from content scraping to fraud transactions.

View More Papers

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

FCGAT: Interpretable Malware Classification Method using Function Call Graph...

Minami Someya (Institute of Information Security), Yuhei Otsubo (National Police Academy), Akira Otsuka (Institute of Information Security)

Read More

A Systematic Study of the Consistency of Two-Factor Authentication...

Sanam Ghorbani Lyastani (CISPA Helmholtz Center for Information Security, Saarland University), Michael Backes (CISPA Helmholtz Center for Information Security), Sven Bugiel (CISPA Helmholtz Center for Information Security)

Read More

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More