Hwanjo Heo (ETRI), Seungwon Woo (ETRI/KAIST), Taeung Yoon (KAIST), Min Suk Kang (KAIST), Seungwon Shin (KAIST)

We present a practical partitioning attack, which we call Gethlighting, that isolates an Ethereum full node from the rest of the network for hours without having to occupy (or eclipse) all of the target’s peer connections. In Gethlighting, an adversary controls only about a half (e.g., 25 out of total 50) of all peer connections of a target node, achieving powerful partitioning with a small attack budget of operating several inexpensive virtual machines. At the core of Gethlighting, its low-rate denial-of-service (DoS) strategy effectively stops the growth of local blockchain for hours while leaving other Ethereum node operations undisturbed. We analyze how subtle and insignificant delays incurred by a low-rate DoS can lead to a powerful blockchain partitioning attack. The practical impact of Gethlighting is discussed — i.e., the attack is scalable and low-cost (only about $5,714 for targeting all Ethereum full nodes concurrently for 24 hours), and extremely simple to launch. We demonstrate the feasibility of Gethlighting with full nodes in the Ethereum mainnet and testnet in both controlled and real-world experiments. We identify a number of fundamental system characteristics in Ethereum that enable Gethlighting attacks and propose countermeasures that require some protocol and client implementation enhancements. Ethereum Foundation has acknowledged this vulnerability in September 2022 and one of our countermeasures has been accepted as a hotfix for Geth 1.11.0.

View More Papers

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More

RR: A Fault Model for Efficient TEE Replication

Baltasar Dinis (Instituto Superior Técnico (IST-ULisboa) / INESC-ID / MPI-SWS), Peter Druschel (MPI-SWS), Rodrigo Rodrigues (Instituto Superior Técnico (IST-ULisboa) / INESC-ID)

Read More

Preventing SIM Box Fraud Using Device Model Fingerprinting

BeomSeok Oh (KAIST), Junho Ahn (KAIST), Sangwook Bae (KAIST), Mincheol Son (KAIST), Yonghwa Lee (KAIST), Min Suk Kang (KAIST), Yongdae Kim (KAIST)

Read More

Blaze: A Framework for Interprocedural Binary Analysis

Matthew Revelle, Matt Parker, Kevin Orr (Kudu Dynamics)

Read More