Klim Kireev (EPFL), Bogdan Kulynych (EPFL), Carmela Troncoso (EPFL)

Many safety-critical applications of machine learning, such as fraud or abuse detection, use data in tabular domains. Adversarial examples can be particularly damaging for these applications. Yet, existing works on adversarial robustness primarily focus on machine-learning models in image and text domains. We argue that, due to the differences between tabular data and images or text, existing threat models are not suitable for tabular domains. These models do not capture that the costs of an attack could be more significant than imperceptibility, or that the adversary could assign different values to the utility obtained from deploying different adversarial examples. We demonstrate that, due to these differences, the attack and defense methods used for images and text cannot be directly applied to tabular settings. We address these issues by proposing new cost and utility-aware threat models that are tailored to the adversarial capabilities and constraints of attackers targeting tabular domains. We introduce a framework that enables us to design attack and defense mechanisms that result in models protected against cost or utility-aware adversaries, for example, adversaries constrained by a certain financial budget. We show that our approach is effective on three datasets corresponding to applications for which adversarial examples can have economic and social implications.

View More Papers

PPA: Preference Profiling Attack Against Federated Learning

Chunyi Zhou (Nanjing University of Science and Technology), Yansong Gao (Nanjing University of Science and Technology), Anmin Fu (Nanjing University of Science and Technology), Kai Chen (Chinese Academy of Science), Zhiyang Dai (Nanjing University of Science and Technology), Zhi Zhang (CSIRO's Data61), Minhui Xue (CSIRO's Data61), Yuqing Zhang (University of Chinese Academy of Science)

Read More

Power to the Data Defenders: Human-Centered Disclosure Risk Calibration...

Kaustav Bhattacharjee, Aritra Dasgupta (New Jersey Institute of Technology)

Read More

Backdoor Attacks Against Dataset Distillation

Yugeng Liu (CISPA Helmholtz Center for Information Security), Zheng Li (CISPA Helmholtz Center for Information Security), Michael Backes (CISPA Helmholtz Center for Information Security), Yun Shen (Netapp), Yang Zhang (CISPA Helmholtz Center for Information Security)

Read More