Nyteisha Bookert, Mohd Anwar (North Carolina Agricultural and Technical State University)

Patient-generated health data is growing at an unparalleled rate due to advancing technologies (e.g., the Internet of Medical Things, 5G, artificial intelligence) and increased consumer transactions. The influx of data has offered life-altering solutions. Consequently, the growth has created significant privacy challenges. A central theme to mitigating risks is promoting transparency and notifying stakeholders of data practices through privacy policies. However, natural language privacy policies have several limitations, such as being difficult to understand (by the user), lengthy, and having conflicting requirements. Yet they remain the de facto standard to inform users of privacy practices and how organizations follow privacy regulations. We developed an automated process to evaluate the appropriateness of combining machine learning and custom named entity recognition techniques to extract IoMT-relevant privacy factors in the privacy policies of IoMT devices. We employed machine learning and the natural language processing technique of named entity recognition to automatically analyze a corpus of policies and specifications to extract privacy-related information for the IoMT device. Based on the natural language analysis of policies, we provide fine-grained annotations that can help reduce the manual and tedious process of policy analysis and aid privacy engineers and policy makers in developing suitable privacy policies.

View More Papers

How to Count Bots in Longitudinal Datasets of IP...

Leon Böck (Technische Universität Darmstadt), Dave Levin (University of Maryland), Ramakrishna Padmanabhan (CAIDA), Christian Doerr (Hasso Plattner Institute), Max Mühlhäuser (Technical University of Darmstadt)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards...

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Read More

Detecting Unknown Encrypted Malicious Traffic in Real Time via...

Chuanpu Fu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University)

Read More