Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Modern automobiles are equipped with a large number of electronic control units (ECUs) to provide safe, driver assistance and comfortable service. The controller area network (CAN) provides real-time data transmission between ECUs with adequate reliability for in-vehicle communication. However, the lack of security measures such as authentication and encryption makes the CAN bus vulnerable to cyberattacks, which affect the safety of passengers and the surrounding environment. Intrusion Detection Systems (IDS) based on one-class classification have been proposed to detect CAN bus intrusions. However, these IDSs require large amounts of benign data with different driving activities for training, which is challenging given the variety of such activities. This paper presents CAN-ODTL, a novel on-device transfer learning-based technique to retrain the IDS using streaming CAN data on a resource-constrained Raspberry Pi device to improve the IDS. Optimized data pre-processing and model quantization minimize the CPU and RAM usage of the Raspberry Pi by making CAN-ODTL suitable to deploy in the CAN bus as an additional ECU to detect in-vehicle cyber attacks. Float 16 quantization improves the Tensorflow model with 78% of memory and 83% of detection latency reduction. Evaluation on a real public dataset over a range of seven attacks, including more sophisticated masquerade attacks, shows that CAN-ODTL outperforms the pre-trained and baseline models with over 99% detection rate for realistic attacks. Experiments on Raspberry Pi demonstrate that CAN-ODTL can detect a wide variety of attacks with near real-time detection latency of 125ms.

View More Papers

Attacks as Defenses: Designing Robust Audio CAPTCHAs Using Attacks...

Hadi Abdullah (Visa Research), Aditya Karlekar (University of Florida), Saurabh Prasad (University of Florida), Muhammad Sajidur Rahman (University of Florida), Logan Blue (University of Florida), Luke A. Bauer (University of Florida), Vincent Bindschaedler (University of Florida), Patrick Traynor (University of Florida)

Read More

Reminding Drivers of the Stalking Vehicles on the Road

Wei Sun, Kannan Srinivsan (The Ohio State University)

Read More

Anomaly Detection in the Open World: Normality Shift Detection,...

Dongqi Han (Tsinghua University), Zhiliang Wang (Tsinghua University), Wenqi Chen (Tsinghua University), Kai Wang (Tsinghua University), Rui Yu (Tsinghua University), Su Wang (Tsinghua University), Han Zhang (Tsinghua University), Zhihua Wang (State Grid Shanghai Municipal Electric Power Company), Minghui Jin (State Grid Shanghai Municipal Electric Power Company), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia…

Read More

Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software

Hugo Lefeuvre (The University of Manchester), Vlad-Andrei Bădoiu (University Politehnica of Bucharest), Yi Chen (Rice University), Felipe Huici (Unikraft.io), Nathan Dautenhahn (Rice University), Pierre Olivier (The University of Manchester)

Read More