Dongyao Chen (Shanghai Jiao Tong University), Mert D. Pesé (Clemson University), Kang G. Shin (University of Michigan, Ann Arbor)

ZOOX Best Paper Award Winner ($500 cash prize)!

Driving apps, such as navigation, fuel-price, and road services, have been deployed and used widely. The car-related nature of these services may motivate them to infer the type of their users’ vehicles. We first apply systematic analytics on real-world apps to show that the vehicle-type — seemingly unharmful — information may have serious privacy implications. Next, we demonstrate that attackers can harvest the features of these mobile apps to infer the car-type information in a stealthy way. Specifically, we explore the use of zero-permission mobile motion sensors to extract spectral features for differentiating the engines and body types of vehicles. Based on our experimental results of 17 different cars, we have achieved 82+% and 85+% overall accuracy in identifying three major engine types and four popular body types, respectively.

View More Papers

PISE: Protocol Inference using Symbolic Execution and Automata Learning

Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

Read More

StealthyIMU: Stealing Permission-protected Private Information From Smartphone Voice Assistant...

Ke Sun (University of California San Diego), Chunyu Xia (University of California San Diego), Songlin Xu (University of California San Diego), Xinyu Zhang (University of California San Diego)

Read More

On the Feasibility of Profiling Electric Vehicles through Charging...

Ankit Gangwal (IIIT Hyderabad), Aakash Jain (IIIT Hyderabad) and Mauro Conti (University of Padua)

Read More

Random Spoofing Attack against Scan Matching Algorithm SLAM (Long)

Masashi Fukunaga (MitsubishiElectric), Takeshi Sugawara (The University of Electro-Communications)

Read More