Meisam Mohammady (Iowa State University), Reza Arablouei (Data61, CSIRO)

We estimate vehicular traffic states from multi-modal data collected by single-loop detectors while preserving the privacy of the individual vehicles contributing to the data. To this end, we propose a novel hybrid differential privacy (DP) approach that utilizes minimal randomization to preserve privacy by taking advantage of the relevant traffic state dynamics and the concept of DP sensitivity. Through theoretical analysis and experiments with real-world data, we show that the proposed approach significantly outperforms the related baseline non-private and private approaches in terms of accuracy and privacy preservation.

View More Papers

Do Privacy Labels Answer Users' Privacy Questions?

Shikun Zhang, Norman Sadeh (Carnegie Mellon University)

Read More

Double and Nothing: Understanding and Detecting Cryptocurrency Giveaway Scams

Xigao Li (Stony Brook University), Anurag Yepuri (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

Automata-Based Automated Detection of State Machine Bugs in Protocol...

Paul Fiterau-Brostean (Uppsala University, Sweden), Bengt Jonsson (Uppsala University, Sweden), Konstantinos Sagonas (Uppsala University, Sweden and National Technical University of Athens, Greece), Fredrik Tåquist (Uppsala University, Sweden)

Read More