Zachary Depp, Halit Bugra Tulay, C. Emre Koksal (The Ohio State University)

The traditional vehicular roll-jam attack is an effective means to gain access to the target vehicle by jamming and recording key fob inputs from a victim. However, it requires specific knowledge of the attack surface, and delicate tuning of software-defined radio parameters. We have developed an enhanced version of the roll-jam attack that uses a known noise signal for jamming, in contrast to the additive white Gaussian noise that is typically used in the attack. Using a known noise signal allows for less strict tuning of the software-defined radios used in the attack, and allows for digital noise removal of the recorded input to enhance the replay attack.

View More Papers

Improving In-vehicle Networks Intrusion Detection Using On-Device Transfer Learning

Sampath Rajapaksha (Robert Gordon University), Harsha Kalutarage (Robert Gordon University), M.Omar Al-Kadri (Birmingham City University), Andrei Petrovski (Robert Gordon University), Garikayi Madzudzo (Horiba Mira Ltd)

Read More

A Robust Counting Sketch for Data Plane Intrusion Detection

Sian Kim (Ewha Womans University), Changhun Jung (Ewha Womans University), RhongHo Jang (Wayne State University), David Mohaisen (University of Central Florida), DaeHun Nyang (Ewha Womans University)

Read More

Security Attacks to the Name Management Protocol in Vehicular...

Sharika Kumar (The Ohio State University), Imtiaz Karim, Elisa Bertino (Purdue University), Anish Arora (Ohio State University)

Read More