Zhiyou Tian (Xidian University), Cong Sun (Xidian University), Dongrui Zeng (Palo Alto Networks), Gang Tan (Pennsylvania State University)

Dynamic taint analysis (DTA) has been widely used in security applications, including exploit detection, data provenance, fuzzing improvement, and information flow control. Meanwhile, the usability of DTA is argued on its high runtime overhead, causing a slowdown of more than one magnitude on large binaries. Various approaches have used preliminary static analysis and introduced parallelization or higher-granularity abstractions to raise the scalability of DTA. In this paper, we present a dynamic taint analysis framework podft that defines and enforces different fast paths to improve the efficiency of DBI-based dynamic taint analysis. podft uses a value-set analysis (VSA) to differentiate the instructions that must not be tainted from those potentially tainted. Combining the VSA-based analysis results with proper library function abstractions, we develop taint tracking policies for fast and slow paths and implement the tracking policy enforcement as a Pin-based taint tracker. The experimental results show that podft is more efficient than the state-of-the-art fast path-based DTA approach and competitive with the static binary rewriting approach. podft has a high potential to integrate basic block-level deep neural networks to simplify fast path enforcement and raise tracking efficiency.

View More Papers

Sometimes, You Aren’t What You Do: Mimicry Attacks against...

Akul Goyal (University of Illinois at Urbana-Champaign), Xueyuan Han (Wake Forest University), Gang Wang (University of Illinois at Urbana-Champaign), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More

OBSan: An Out-Of-Bound Sanitizer to Harden DNN Executables

Yanzuo Chen (The Hong Kong University of Science and Technology), Yuanyuan Yuan (The Hong Kong University of Science and Technology), Shuai Wang (The Hong Kong University of Science and Technology)

Read More

Ethical Challenges in Blockchain Network Measurement Research

Yuzhe Tang (Syracuse University), Kai Li (San Diego State University), and Yibo Wang and Jiaqi Chen (Syracuse University)

Read More