Wei Zhou, Zhouqi Jiang (School of Cyber Science and Engineering, Huazhong University of Science and Technology), Le Guan (School of Computing, University of Georgia)

As more and more microcontroller-based embedded devices are connected to the Internet, as part of the Internet-of-Things (IoT), previously less tested (and insecure) devices are exposed to miscreants. To prevent them from being compromised, the memory protection unit (MPU), which is readily available on many of these devices, has the potential to play an important role in enforcing defense mechanisms. In this work, we comprehensively studied the MPU adoption in top operating systems for microcontrollers. Specifically, we investigate whether MPU is supported, how it is used, and whether the claimed security requirement has been effectively achieved by using it. We conclude that due to the added complexities, incompatibility, and fragmented programming interface, MPUs have not received wide adoption in real products. Moreover, although the MPU was developed for security purposes, it rarely fulfills its designed functionality and can be easily circumvented in many settings. We showcase concrete attacks to FreeRTOS and RIoT in this regard. Finally, we discussed fundamental causes to explain this situation. We hope our findings can inspire research on novel usage of MPU in microcontrollers.

View More Papers

Trim My View: An LLM-Based Code Query System for...

Sima Arasteh (University of Southern California), Pegah Jandaghi, Nicolaas Weideman (University of Southern California/Information Sciences Institute), Dennis Perepech, Mukund Raghothaman (University of Southern California), Christophe Hauser (Dartmouth College), Luis Garcia (University of Utah Kahlert School of Computing)

Read More

Hope of Delivery: Extracting User Locations From Mobile Instant...

Theodor Schnitzler (Research Center Trustworthy Data Science and Security, TU Dortmund, and Ruhr-Universität Bochum), Katharina Kohls (Radboud University), Evangelos Bitsikas (Northeastern University and New York University Abu Dhabi), Christina Pöpper (New York University Abu Dhabi)

Read More

Access Your Tesla without Your Awareness: Compromising Keyless Entry...

Xinyi Xie (Shanghai Fudan Microelectronics Group Co., Ltd.), Kun Jiang (Shanghai Fudan Microelectronics Group Co., Ltd.), Rui Dai (Shanghai Fudan Microelectronics Group Co., Ltd.), Jun Lu (Shanghai Fudan Microelectronics Group Co., Ltd.), Lihui Wang (Shanghai Fudan Microelectronics Group Co., Ltd.), Qing Li (State Key Laboratory of ASIC & System, Fudan University), Jun Yu (State Key…

Read More