Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

protocol from a binary code that implements it. This process is useful in cases such as extraction of the command and control protocol of a malware, uncovering security vulnerabilities in a network protocol implementation or verifying conformance to the protocol’s standard. Protocol inference usually involves time-consuming work to manually reverse engineer the binary code.

We present a novel method to automatically infer state machine of a network protocol and its message formats directly from the binary code. To the best of our knowledge, this is the first method to achieve this solely based on a binary code of a single peer. We do not assume any of the following: access to a remote peer, access to captures of the protocol’s traffic, and prior knowledge of message formats. The method leverages extensions to symbolic execution and novel modifications to automata learning. We validate the proposed method by inferring real-world protocols including the C&C protocol of Gh0st RAT, a well-known malware

View More Papers

DiffCSP: Finding Browser Bugs in Content Security Policy Enforcement...

Seongil Wi (KAIST), Trung Tin Nguyen (CISPA Helmholtz Center for Information Security, Saarland University), Jihwan Kim (KAIST), Ben Stock (CISPA Helmholtz Center for Information Security), Sooel Son (KAIST)

Read More

He-HTLC: Revisiting Incentives in HTLC

Sarisht Wadhwa (Duke University), Jannis Stoeter (Duke University), Fan Zhang (Duke University, Yale University), Kartik Nayak (Duke University)

Read More

Mnemocrypt

André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo (EURECOM)

Read More

Creating Human Readable Path Constraints from Symbolic Execution

Tod Amon (Sandia National Laboratories), Tim Loffredo (Sandia National Laboratories)

Read More