Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar Padilla (Fraunhofer FKIE, Germany), Er Xue Hui, Henry Low, Nicholas Sim (DSO National Laboratories, Singapore)

Analyzing third-party software such as malware is a crucial task for security analysts. Although various approaches for automatic analysis exist and are the subject of ongoing research, analysts often have to resort to manual static analysis to get a deep understanding of a given binary sample. Since the source code of provided samples is rarely available, analysts regularly employ decompilers for easier and faster comprehension than analyzing a binary’s disassembly.

In this paper, we introduce our decompilation approach dewolf. We describe a variety of improvements over the previous academic state-of-the-art decompiler and some novel algorithms to enhance readability and comprehension, focusing on manual analysis. To evaluate our approach and to obtain a better insight into the analysts’ needs, we conducted three user surveys. The results indicate that dewolf is suitable for malware comprehension and that its output quality noticeably exceeds Ghidra and Hex-Rays in certain aspects. Furthermore, our results imply that decompilers aiming at manual analysis should be highly configurable to respect individual user preferences. Additionally, future decompilers should not necessarily follow the unwritten rule to stick to the code-structure dictated by the assembly in order to produce readable output. In fact, the few cases where dewolf already cracks this rule leads to its results considerably exceeding other decompilers. We publish a prototype implementation of dewolf and all survey results [1], [2].

View More Papers

Automata-Based Automated Detection of State Machine Bugs in Protocol...

Paul Fiterau-Brostean (Uppsala University, Sweden), Bengt Jonsson (Uppsala University, Sweden), Konstantinos Sagonas (Uppsala University, Sweden and National Technical University of Athens, Greece), Fredrik Tåquist (Uppsala University, Sweden)

Read More

ReScan: A Middleware Framework for Realistic and Robust Black-box...

Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Read More

Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery...

Jinseob Jeong (KAIST, Agency for Defense Development), Dongkwan Kim (Samsung SDS), Joonha Jang (KAIST), Juhwan Noh (KAIST), Changhun Song (KAIST), Yongdae Kim (KAIST)

Read More

Why do Internet Devices Remain Vulnerable? A Survey with...

Tamara Bondar, Hala Assal, AbdelRahman Abdou (Carleton University)

Read More