Anup K Ghosh

One of the hardest challenges for companies and their officers is determining how much to spend on cybersecurity and the appropriate allocation of those resources. Security “investments” are a cost on the ledger, and as such, companies do not want to spend more on security than they have to. The question most boards have is “how much security is enough?” and “how good is our security program?” Most CISOs and SOC teams have a hard time answering these questions for a lack of data and framework to measure risk and compare with other similar sized companies. This paper presents a data-driven practical approach to assessing and scoring cybersecurity risk that can be used to allocate resources efficiently a nd mitigate cybersecurity risk in areas that need it the most. We combine both static and dynamic measures of risk to give a composite score more indicative of cybersecurity risk over static measures alone.

View More Papers

Securing Federated Sensitive Topic Classification against Poisoning Attacks

Tianyue Chu (IMDEA Networks Institute), Alvaro Garcia-Recuero (IMDEA Networks Institute), Costas Iordanou (Cyprus University of Technology), Georgios Smaragdakis (TU Delft), Nikolaos Laoutaris (IMDEA Networks Institute)

Read More

Smarter Contracts: Detecting Vulnerabilities in Smart Contracts with Deep...

Christoph Sendner (University of Wuerzburg), Huili Chen (University of California San Diego), Hossein Fereidooni (Technische Universität Darmstadt), Lukas Petzi (University of Wuerzburg), Jan König (University of Wuerzburg), Jasper Stang (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt), Farinaz Koushanfar (University of California San Diego)

Read More

REDsec: Running Encrypted Discretized Neural Networks in Seconds

Lars Wolfgang Folkerts (University of Delaware), Charles Gouert (University of Delaware), Nektarios Georgios Tsoutsos (University of Delaware)

Read More

WIP: Practical Removal Attacks on LiDAR-based Object Detection in...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More