Edd Salkield, Sebastian Köhler, Simon Birnbach, Richard Baker (University of Oxford). Martin Strohmeier (armasuisse S+T), Ivan Martinovic (University of Oxford) Presenter: Edd Salkield

Data from Earth Observation satellites has become crucial in private enterprises, research applications, and in coordinating national responses to events such as forest fires. These purposes are supported by data derived from a variety of satellites, some of which do not secure the wireless downlink channel effectively. This opens the door for modern adversaries to conduct spoofing attacks by overshadowing the signal with commercially available radio equipment.

In this paper, we assess the vulnerability of current Earth Observation systems to spoofing attacks conducted at the physical layer. The effect of these attacks is amplified since the data is received at dedicated ground stations and distributed to hundreds of downstream systems, which are themselves not designed with security in mind. Specifically, we take NASA’s live forest fire detection system as a case study, and demonstrate that the attacker can achieve arbitrary manipulation of fires in the derived dataset to trigger false emergency responses or mislead crisis analysis. We also assess the attack surface presented by ground station software which implicitly trusts data from the RF port. Against the NASA system we uncover several new vulnerabilities that can be exploited to stealthily deny service.

We conclude with a discussion of physical-layer counter-measures to detect and defend against spoofing, which can be implemented in existing deployments at the ground station.

View More Papers

dewolf: Improving Decompilation by leveraging User Surveys

Steffen Enders, Eva-Maria C. Behner, Niklas Bergmann, Mariia Rybalka, Elmar Padilla (Fraunhofer FKIE, Germany), Er Xue Hui, Henry Low, Nicholas Sim (DSO National Laboratories, Singapore)

Read More

MyTEE: Own the Trusted Execution Environment on Embedded Devices

Seungkyun Han (Chungnam National University), Jinsoo Jang (Chungnam National University)

Read More

AuthentiSense: A Scalable Behavioral Biometrics Authentication Scheme using Few-Shot...

Hossein Fereidooni (Technical University of Darmstadt), Jan Koenig (University of Wuerzburg), Phillip Rieger (Technical University of Darmstadt), Marco Chilese (Technical University of Darmstadt), Bora Goekbakan (KOBIL, Germany), Moritz Finke (University of Wuerzburg), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Augmented Reality’s Potential for Identifying and Mitigating Home Privacy...

Stefany Cruz (Northwestern University), Logan Danek (Northwestern University), Shinan Liu (University of Chicago), Christopher Kraemer (Georgia Institute of Technology), Zixin Wang (Zhejiang University), Nick Feamster (University of Chicago), Danny Yuxing Huang (New York University), Yaxing Yao (University of Maryland), Josiah Hester (Georgia Institute of Technology)

Read More