Frank Lee and Gregory Falco (Johns Hopkins University)

Presenter: Frank Lee

End-of-life (EOL) satellites are space assets that have completed their primary mission. Due to their loss in commercial or scientific priority, EOL satellites are often left in place by operators for an extended period, instead of being decommissioned in a timely manner to free up high-value orbits. This period of inactivity exposes EOL satellites to a lower level of operator vigilance, and therefore, higher level of cyberattack risk. With the recent growth in space activities, this paper estimates there will be up to 5,000 inactive satellites in low Earth orbit (LEO) within 5 years, magnifying the space cyber risks and resulting space sustainability challenges. To bolster space cybersecurity, the authors illuminate unique attack vectors against EOL satellites, as well as policy and technical mitigation measures. When part of a constellation, the vulnerability of an EOL satellite has even bigger implications, where a threat actor may use the secondary asset to target primary assets. Ultimately, the active management of EOL satellites is significant for a secure and sustainable LEO infrastructure.

View More Papers

Parakeet: Practical Key Transparency for End-to-End Encrypted Messaging

Harjasleen Malvai (UIUC/IC3), Lefteris Kokoris-Kogias (IST Austria), Alberto Sonnino (Mysten Labs), Esha Ghosh (Microsoft Research), Ercan Oztürk (Meta), Kevin Lewi (Meta), Sean Lawlor (Meta)

Read More

VulHawk: Cross-architecture Vulnerability Detection with Entropy-based Binary Code Search

Zhenhao Luo (College of Computer, National University of Defense Technology), Pengfei Wang (College of Computer, National University of Defense Technology), Baosheng Wang (College of Computer, National University of Defense Technology), Yong Tang (College of Computer, National University of Defense Technology), Wei Xie (College of Computer, National University of Defense Technology), Xu Zhou (College of Computer,…

Read More