Deepak Sirone Jegan (University of Wisconsin-Madison), Michael Swift (University of Wisconsin-Madison), Earlence Fernandes (University of California San Diego)

A Trigger-action platform (TAP) is a type of distributed system that allows end-users to create programs that stitch their web-based services together to achieve useful automation. For example, a program can be triggered when a new spreadsheet row is added, it can compute on that data and invoke an action, such as sending a message on Slack. Current TAP architectures require users to place complete trust in their secure operation. Experience has shown that unconditional trust in cloud services is unwarranted --- an attacker who compromises the TAP cloud service will gain access to sensitive data and devices for millions of users. In this work, we re-architect TAPs so that users have to place minimal trust in the cloud. Specifically, we design and implement TAPDance, a TAP that guarantees confidentiality and integrity of program execution in the presence of an untrustworthy TAP service. We utilize RISC-V Keystone enclaves to enable these security guarantees while minimizing the trusted software and hardware base. Performance results indicate that TAPDance outperforms a baseline TAP implementation using Node.js with 32% lower latency and 33% higher throughput on average.

View More Papers

FirmDiff: Improving the Configuration of Linux Kernels Geared Towards...

Ioannis Angelakopoulos (Boston University), Gianluca Stringhini (Boston University), Manuel Egele (Boston University)

Read More

Private Aggregate Queries to Untrusted Databases

Syed Mahbub Hafiz (University of California, Davis), Chitrabhanu Gupta (University of California, Davis), Warren Wnuck (University of California, Davis), Brijesh Vora (University of California, Davis), Chen-Nee Chuah (University of California, Davis)

Read More

Using Behavior Monitoring to Identify Privacy Concerns in Smarthome...

Atheer Almogbil, Momo Steele, Sofia Belikovetsky (Johns Hopkins University), Adil Inam (University of Illinois at Urbana-Champaign), Olivia Wu (Johns Hopkins University), Aviel Rubin (Johns Hopkins University), Adam Bates (University of Illinois at Urbana-Champaign)

Read More

IDA: Hybrid Attestation with Support for Interrupts and TOCTOU

Fatemeh Arkannezhad (UCLA), Justin Feng (UCLA), Nader Sehatbakhsh (UCLA)

Read More