Zhuo Cheng (Carnegie Mellon University), Maria Apostolaki (Princeton University), Zaoxing Liu (University of Maryland), Vyas Sekar (Carnegie Mellon University)

Cloud providers deploy telemetry tools in software to perform end-host network analytics. Recent efforts show that sketches, a kind of approximate data structure, are a promising basis for software-based telemetry, as they provide high fidelity for many statistics with a low resource footprint. However, an attacker can compromise sketch-based telemetry results via software vulnerabilities. Consequently, they can nullify the use of telemetry; e.g., avoiding attack detection or inducing accounting discrepancies. In this paper, we formally define the requirements for trustworthy sketch-based telemetry and show that prior work cannot meet those due to the sketch’s probabilistic nature and performance requirements. We present the design and implementation TRUSTSKETCH, a general framework for trustworthy sketch telemetry that can support a wide spectrum of sketching algorithms. We show that TRUSTSKETCH is able to detect a wide range of attacks on sketch-based telemetry in a timely fashion while incurring only minimal overhead.

View More Papers

LARMix: Latency-Aware Routing in Mix Networks

Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (KU Leuven), Claudia Diaz (KU Leuven)

Read More

Differentially Private Dataset Condensation

Tianhang Zheng (University of Missouri-Kansas City), Baochun Li (University of Toronto)

Read More

Pisces: Private and Compliable Cryptocurrency Exchange

Ya-Nan Li (The University of Sydney), Tian Qiu (The University of Sydney), Qiang Tang (The University of Sydney)

Read More

Powers of Tau in Asynchrony

Sourav Das (University of Illinois at Urbana-Champaign), Zhuolun Xiang (Aptos), Ling Ren (University of Illinois at Urbana-Champaign)

Read More