Zhuo Cheng (Carnegie Mellon University), Maria Apostolaki (Princeton University), Zaoxing Liu (University of Maryland), Vyas Sekar (Carnegie Mellon University)

Cloud providers deploy telemetry tools in software to perform end-host network analytics. Recent efforts show that sketches, a kind of approximate data structure, are a promising basis for software-based telemetry, as they provide high fidelity for many statistics with a low resource footprint. However, an attacker can compromise sketch-based telemetry results via software vulnerabilities. Consequently, they can nullify the use of telemetry; e.g., avoiding attack detection or inducing accounting discrepancies. In this paper, we formally define the requirements for trustworthy sketch-based telemetry and show that prior work cannot meet those due to the sketch’s probabilistic nature and performance requirements. We present the design and implementation TRUSTSKETCH, a general framework for trustworthy sketch telemetry that can support a wide spectrum of sketching algorithms. We show that TRUSTSKETCH is able to detect a wide range of attacks on sketch-based telemetry in a timely fashion while incurring only minimal overhead.

View More Papers

WIP: Shadow Hack: Adversarial Shadow Attack Against LiDAR Object...

Ryunosuke Kobayashi, Kazuki Nomoto, Yuna Tanaka, Go Tsuruoka (Waseda University), Tatsuya Mori (Waseda University/NICT/RIKEN)

Read More

Faults in Our Bus: Novel Bus Fault Attack to...

Nimish Mishra (Department of Computer Science and Engineering, IIT Kharagpur), Anirban Chakraborty (Department of Computer Science and Engineering, IIT Kharagpur), Debdeep Mukhopadhyay (Department of Computer Science and Engineering, IIT Kharagpur)

Read More

Benchmarking transferable adversarial attacks

Zhibo Jin (The University of Sydney), Jiayu Zhang (Suzhou Yierqi), Zhiyu Zhu, Huaming Chen (The University of Sydney)

Read More