Jiacheng Xu (Zhejiang University), Xuhong Zhang (Zhejiang University), Shouling Ji (Zhejiang University), Yuan Tian (UCLA), Binbin Zhao (Georgia Institute of Technology), Qinying Wang (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University)

Kernels are at the heart of modern operating systems, whereas their development comes with vulnerabilities. Coverage-guided fuzzing has proven to be a promising software testing technique. When applying fuzzing to kernels, the salient aspect of it is that the input is a sequence of system calls (syscalls). As kernels are complex and stateful, specific sequences of syscalls are required to build up necessary states to trigger code deep in the kernels. However, the syscall sequences generated by existing fuzzers fall short in maintaining states to sufficiently cover deep code in the kernels where vulnerabilities favor residing.

In this paper, we present a practical and effective kernel fuzzing framework, called MOCK, which is capable of learning the contextual dependencies in syscall sequences and then generating context-aware syscall sequences. To conform to the statefulness when fuzzing kernel, MOCK adaptively mutates syscall sequences in line with the calling context. MOCK integrates the context-aware dependency with (1) a customized language model-guided dependency learning algorithm, (2) a context-aware syscall sequence mutation algorithm, and (3) an adaptive task scheduling strategy to balance exploration and exploitation. Our evaluation shows that MOCK performs effectively in achieving branch coverage (up to 32% coverage growth), producing high-quality input (50% more interrelated sequences), and discovering bugs (15% more unique crashes) than the state-of-the-art kernel fuzzers. Various setups including initial seeds and a pre-trained model further boost MOCK's performance. Additionally, MOCK also discovers 15 unique bugs in the most recent Linux kernels, including two CVEs.

View More Papers

Like, Comment, Get Scammed: Characterizing Comment Scams on Media...

Xigao Li (Stony Brook University), Amir Rahmati (Stony Brook University), Nick Nikiforakis (Stony Brook University)

Read More

Free Proxies Unmasked: A Vulnerability and Longitudinal Analysis of...

Naif Mehanna (Univ. Lille / Inria / CNRS), Walter Rudametkin (IRISA / Univ Rennes), Pierre Laperdrix (CNRS, Univ Lille, Inria Lille), and Antoine Vastel (Datadome)

Read More

Securing the Satellite Software Stack

Samuel Jero (MIT Lincoln Laboratory), Juliana Furgala (MIT Lincoln Laboratory), Max A Heller (MIT Lincoln Laboratory), Benjamin Nahill (MIT Lincoln Laboratory), Samuel Mergendahl (MIT Lincoln Laboratory), Richard Skowyra (MIT Lincoln Laboratory)

Read More

REPLICAWATCHER: Training-less Anomaly Detection in Containerized Microservices

Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Read More