Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Mutation-based fuzzing is popular and effective in discovering unseen code and exposing bugs. However, only a few studies have concentrated on quantifying the importance of input bytes, which refers to the degree to which a byte contributes to the discovery of new code. They often focus on obtaining the relationship between input bytes and path constraints, ignoring the fact that not all constraint-related bytes can discover new code. In this paper, we conduct Shapely analysis to understand the effect of byte positions on fuzzing performance, and find that some byte positions contribute more than others and this property often holds across seeds. Based on this observation, we propose a novel fuzzing solution, ShapFuzz, to guide byte selection and mutation. Specifically, ShapFuzz updates Shapley values (importance) of bytes when each input is tested during fuzzing with a low overhead, and utilizes contextual multi-armed bandit to trade off between mutating high Shapley value bytes and low-frequently chosen bytes. We implement a prototype of this solution based on AFL++, i.e., ShapFuzz. We evaluate ShapFuzz against ten state-of-the-art fuzzers, including five byte schedule-reinforced fuzzers and five commonly used fuzzers. Compared with byte schedule-reinforced fuzzers, ShapFuzz discovers more edges and exposes more bugs than the best baseline on three different sets of initial seeds. Compared with commonly used fuzzers, ShapFuzz exposes 20 more bugs than the best comparison fuzzer, and discovers 6 more CVEs than the best baseline on MAGMA. Furthermore, ShapFuzz discovers 11 new bugs on the latest versions of programs, and 3 of them are confirmed by vendors.

View More Papers

dRR: A Decentralized, Scalable, and Auditable Architecture for RPKI...

Yingying Su (Tsinghua university), Dan Li (Tsinghua university), Li Chen (Zhongguancun Laboratory), Qi Li (Tsinghua university), Sitong Ling (Tsinghua University)

Read More

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More

Facilitating Non-Intrusive In-Vivo Firmware Testing with Stateless Instrumentation

Jiameng Shi (University of Georgia), Wenqiang Li (Independent Researcher), Wenwen Wang (University of Georgia), Le Guan (University of Georgia)

Read More

On the Feasibility of CubeSats Application Sandboxing for Space...

Gabriele Marra (CISPA Helmholtz Center for Information Security), Ulysse Planta (CISPA Helmholtz Center for Information Security and Saarbrücken Graduate School of Computer Science), Philipp Wüstenberg (Chair of Space Technology, Technische Universität Berlin), Ali Abbasi (CISPA Helmholtz Center for Information Security)

Read More