Zhengyi Li (Indiana University Bloomington), Xiaojing Liao (Indiana University Bloomington)

An appraisal system is a feedback mechanism that has gained popularity in underground marketplaces. This system allows appraisers, who receive free samples from vendors, to provide assessments (i.e., appraisal reviews) for products in underground marketplaces. In this paper, we present the first measurement study on the appraisal system within underground marketplaces. Specifically, from 17M communication traces from eight marketplaces spanning from Feb 2006 to Mar 2023, we discover 56,229 appraisal reviews posted by 18,701 unique appraisers. We look into the appraisal review ecosystem, revealing five commonly used requirements and merits in the appraiser selection process. These findings indicate that the appraisal system is a well-established and structured process within the underground marketplace ecosystem. Furthermore, we reveal the presence of high-quality and unique cyber threat intelligence (CTI) in appraisal reviews. For example, we identify the geolocations of followers for a social booster and programming languages used for malware. Leveraging our extraction model, which integrates 41 distinct types of CTI, we capture 23,978 artifacts associated with 16,668 (50.2%) appraisal reviews. In contrast, artifacts are found in only 8.9% of listings and 2.7% of non-appraisal reviews. Our study provides valuable insights into this under-explored source of CTI, complementing existing research on threat intelligence gathering.

View More Papers

The Dark Side of E-Commerce: Dropshipping Abuse as a...

Arjun Arunasalam (Purdue University), Andrew Chu (University of Chicago), Muslum Ozgur Ozmen (Purdue University), Habiba Farrukh (University of California, Irvine), Z. Berkay Celik (Purdue University)

Read More

REPLICAWATCHER: Training-less Anomaly Detection in Containerized Microservices

Asbat El Khairi (University of Twente), Marco Caselli (Siemens AG), Andreas Peter (University of Oldenburg), Andrea Continella (University of Twente)

Read More

Don't Interrupt Me – A Large-Scale Study of On-Device...

Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

Read More

TEE-SHirT: Scalable Leakage-Free Cache Hierarchies for TEEs

Kerem Arikan (Binghamton University), Abraham Farrell (Binghamton University), Williams Zhang Cen (Binghamton University), Jack McMahon (Binghamton University), Barry Williams (Binghamton University), Yu David Liu (Binghamton University), Nael Abu-Ghazaleh (University of California, Riverside), Dmitry Ponomarev (Binghamton University)

Read More