Jianting Zhang (Purdue University), Wuhui Chen (Sun Yat-sen University), Sifu Luo (Sun Yat-sen University), Tiantian Gong (Purdue University), Zicong Hong (The Hong Kong Polytechnic University), Aniket Kate (Purdue University)

Sharding is a prominent technique for scaling blockchains. By dividing the network into smaller components known as shards, a sharded blockchain can process transactions in parallel without introducing inconsistencies through the coordination of intra-shard and cross-shard consensus protocols. However, we observe a critical security issue with sharded systems: transaction ordering manipulations can occur when coordinating intra-shard and cross-shard consensus protocols, leaving the system vulnerable to attack. Specifically, we identify a novel security issue known as finalization fairness, which can be exploited through a front-running attack. This attack allows an attacker to manipulate the execution order of transactions, even if the victim's transaction has already been processed and added to the blockchain by a fair intra-shard consensus.

To address the issue, we offer Haechi, a novel cross-shard protocol that is immune to front-running attacks. Haechi introduces an ordering phase between transaction processing and execution, ensuring that the execution order of transactions is the same as the processing order and achieving finalization fairness. To accommodate different consensus speeds among shards, Haechi incorporates a finalization fairness algorithm to achieve a globally fair order with minimal performance loss. By providing a global order, Haechi ensures strong consistency among shards, enabling better parallelism in handling conflicting transactions across shards. These features make Haechi a promising solution for supporting popular smart contracts in the real world. To evaluate Haechi's performance and effectiveness in preventing the attack, we implemented the protocol using Tendermint and conducted extensive experiments on a geo-distributed AWS environment. Our results demonstrate that Haechi can effectively prevent the presented front-running attack with little performance sacrifice compared to existing cross-shard consensus protocols.

View More Papers

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

A Comparison of Three Approaches to Assist Users in...

Michael Clark (Brigham Young University), Scott Ruoti (The University of Tennessee), Michael Mendoza (Imperial College London), Kent Seamons (Brigham Young University)

Read More

SigmaDiff: Semantics-Aware Deep Graph Matching for Pseudocode Diffing

Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Read More

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More