Lian Gao (University of California Riverside), Yu Qu (University of California Riverside), Sheng Yu (University of California, Riverside & Deepbits Technology Inc.), Yue Duan (Singapore Management University), Heng Yin (University of California, Riverside & Deepbits Technology Inc.)

Pseudocode diffing precisely locates similar parts and captures differences between the decompiled pseudocode of two given binaries. It is particularly useful in many security scenarios such as code plagiarism detection, lineage analysis, patch, vulnerability analysis, etc. However, existing pseudocode diffing and binary diffing tools suffer from low accuracy and poor scalability, since they either rely on manually-designed heuristics (e.g., Diaphora) or heavy computations like matrix factorization (e.g., DeepBinDiff). To address the limitations, in this paper, we propose a semantics-aware, deep neural network-based model called SigmaDiff. SigmaDiff first constructs IR (Intermediate Representation) level interprocedural program dependency graphs (IPDGs). Then it uses a lightweight symbolic analysis to extract initial node features and locate training nodes for the neural network model. SigmaDiff then leverages the state-of-the-art graph matching model called Deep Graph Matching Consensus (DGMC) to match the nodes in IPDGs. SigmaDiff also introduces several important updates to the design of DGMC such as the pre-training and fine-tuning schema. Experimental results show that SigmaDiff significantly outperforms the state-of-the-art heuristic-based and deep learning-based techniques in terms of both accuracy and efficiency. It is able to precisely pinpoint eight vulnerabilities in a widely-used video conferencing application.

View More Papers

WIP: Auditing Artist Style Pirate in Text-to-image Generation Models

Linkang Du (Zhejiang University), Zheng Zhu (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (Stanford University)

Read More

The Impact of Workload on Phishing Susceptibility: An Experiment

Sijie Zhuo (University of Auckland), Robert Biddle (University of Auckland and Carleton University, Ottawa), Lucas Betts, Nalin Asanka Gamagedara Arachchilage, Yun Sing Koh, Danielle Lottridge, Giovanni Russello (University of Auckland)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More

HistCAN: A real-time CAN IDS with enhanced historical traffic...

Shuguo Zhuo, Nuo Li, Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More