Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Industrial Control Systems (ICS) govern critical infrastructure like power plants and water treatment plants. ICS can be attacked through manipulations of its sensor or actuator values, causing physical harm. A promising technique for detecting such attacks is machine-learning-based anomaly detection, but it does not identify which sensor or actuator was manipulated and makes it difficult for ICS operators to diagnose the anomaly's root cause. Prior work has proposed using attribution methods to identify what features caused an ICS anomaly-detection model to raise an alarm, but it is unclear how well these attribution methods work in practice. In this paper, we compare state-of-the-art attribution methods for the ICS domain with real attacks from multiple datasets. We find that attribution methods for ICS anomaly detection do not perform as well as suggested in prior work and identify two main reasons. First, anomaly detectors often detect attacks either immediately or significantly after the attack start; we find that attributions computed at these detection points are inaccurate. Second, attribution accuracy varies greatly across attack properties, and attribution methods struggle with attacks on categorical-valued actuators. Despite these challenges, we find that ensembles of attributions can compensate for weaknesses in individual attribution methods. Towards practical use of attributions for ICS anomaly detection, we provide recommendations for researchers and practitioners, such as the need to evaluate attributions with diverse datasets and the potential for attributions in non-real-time workflows.

View More Papers

IRRedicator: Pruning IRR with RPKI-Valid BGP Insights

Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Read More

EnclaveFuzz: Finding Vulnerabilities in SGX Applications

Liheng Chen (Institute of Information Engineering, Chinese Academy of Sciences; School of Cyber Security, University of Chinese Academy of Sciences; Institute for Network Science and Cyberspace of Tsinghua University), Zheming Li (Institute for Network Science and Cyberspace of Tsinghua University), Zheyu Ma (Institute for Network Science and Cyberspace of Tsinghua University), Yuan Li (Tsinghua University),…

Read More

Automatic Adversarial Adaption for Stealthy Poisoning Attacks in Federated...

Torsten Krauß (University of Würzburg), Jan König (University of Würzburg), Alexandra Dmitrienko (University of Wuerzburg), Christian Kanzow (University of Würzburg)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More