Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Industrial Control Systems (ICS) govern critical infrastructure like power plants and water treatment plants. ICS can be attacked through manipulations of its sensor or actuator values, causing physical harm. A promising technique for detecting such attacks is machine-learning-based anomaly detection, but it does not identify which sensor or actuator was manipulated and makes it difficult for ICS operators to diagnose the anomaly's root cause. Prior work has proposed using attribution methods to identify what features caused an ICS anomaly-detection model to raise an alarm, but it is unclear how well these attribution methods work in practice. In this paper, we compare state-of-the-art attribution methods for the ICS domain with real attacks from multiple datasets. We find that attribution methods for ICS anomaly detection do not perform as well as suggested in prior work and identify two main reasons. First, anomaly detectors often detect attacks either immediately or significantly after the attack start; we find that attributions computed at these detection points are inaccurate. Second, attribution accuracy varies greatly across attack properties, and attribution methods struggle with attacks on categorical-valued actuators. Despite these challenges, we find that ensembles of attributions can compensate for weaknesses in individual attribution methods. Towards practical use of attributions for ICS anomaly detection, we provide recommendations for researchers and practitioners, such as the need to evaluate attributions with diverse datasets and the potential for attributions in non-real-time workflows.

View More Papers

Automatic Policy Synthesis and Enforcement for Protecting Untrusted Deserialization

Quan Zhang (Tsinghua University), Yiwen Xu (Tsinghua University), Zijing Yin (Tsinghua University), Chijin Zhou (Tsinghua University), Yu Jiang (Tsinghua University)

Read More

Untangle: Multi-Layer Web Server Fingerprinting

Cem Topcuoglu (Northeastern University), Kaan Onarlioglu (Akamai Technologies), Bahruz Jabiyev (Northeastern University), Engin Kirda (Northeastern University)

Read More

5G-Spector: An O-RAN Compliant Layer-3 Cellular Attack Detection Service

Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Read More

Faster and Better: Detecting Vulnerabilities in Linux-based IoT Firmware...

Zicong Gao (State Key Laboratory of Mathematical Engineering and Advanced Computing), Chao Zhang (Tsinghua University), Hangtian Liu (State Key Laboratory of Mathematical Engineering and Advanced Computing), Wenhou Sun (Tsinghua University), Zhizhuo Tang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Liehui Jiang (State Key Laboratory of Mathematical Engineering and Advanced Computing), Jianjun Chen (Tsinghua…

Read More