Mahdi Rahimi (KU Leuven), Piyush Kumar Sharma (KU Leuven), Claudia Diaz (KU Leuven)

Anonymous communication systems such as mix networks achieve anonymity at the expense of latency that is introduced to alter the flow of packets and hinder their tracing. A high latency however has a negative impact on usability. In this work, we propose LARMix, a novel latency-aware routing scheme for mixnets that reduces propagation latency with a limited impact on anonymity. LARMix can achieve this while also load balancing the traffic in the network. We additionally show how a network can be configured to maximize anonymity while meeting an average end-to-end latency constraint. Lastly, we perform a security analysis studying various adversarial strategies and conclude that LARMix does not significantly increase adversarial advantage as long as the adversary is not able to selectively compromise mixnodes after the LARMix routing policy has been computed.

View More Papers

Automatic Policy Synthesis and Enforcement for Protecting Untrusted Deserialization

Quan Zhang (Tsinghua University), Yiwen Xu (Tsinghua University), Zijing Yin (Tsinghua University), Chijin Zhou (Tsinghua University), Yu Jiang (Tsinghua University)

Read More

Threats Against Satellite Ground Infrastructure: A retrospective analysis of...

Jessie Hamill-Stewart (University of Bristol and University of Bath), Awais Rashid (University of Bristol)

Read More

Phoenix: Surviving Unpatched Vulnerabilities via Accurate and Efficient Filtering...

Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Read More

ShapFuzz: Efficient Fuzzing via Shapley-Guided Byte Selection

Kunpeng Zhang (Shenzhen International Graduate School, Tsinghua University), Xiaogang Zhu (Swinburne University of Technology), Xi Xiao (Shenzhen International Graduate School, Tsinghua University), Minhui Xue (CSIRO's Data61), Chao Zhang (Tsinghua University), Sheng Wen (Swinburne University of Technology)

Read More