Guy Amit (Ben-Gurion University), Moshe Levy (Ben-Gurion University), Yisroel Mirsky (Ben-Gurion University)

Deep neural networks are normally executed in the forward direction. However, in this work, we identify a vulnerability that enables models to be trained in both directions and on different tasks. Adversaries can exploit this capability to hide rogue models within seemingly legitimate models. In addition, in this work we show that neural networks can be taught to systematically memorize and retrieve specific samples from datasets. Together, these findings expose a novel method in which adversaries can exfiltrate datasets from protected learning environments under the guise of legitimate models.

We focus on the data exfiltration attack and show that modern architectures can be used to secretly exfiltrate tens of thousands of samples with high fidelity, high enough to compromise data privacy and even train new models. Moreover, to mitigate this threat we propose a novel approach for detecting infected models.

View More Papers

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More

MacOS versus Microsoft Windows: A Study on the Cybersecurity...

Cem Topcuoglu (Northeastern University), Andrea Martinez (Florida International University), Abbas Acar (Florida International University), Selcuk Uluagac (Florida International University), Engin Kirda (Northeastern University)

Read More

EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification...

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More