Yuxiang Yang (Tsinghua University), Xuewei Feng (Tsinghua University), Qi Li (Tsinghua University), Kun Sun (George Mason University), Ziqiang Wang (Southeast University), Ke Xu (Tsinghua University)

In this paper, we uncover a new side-channel vulnerability in the widely used NAT port preservation strategy and an insufficient reverse path validation strategy of Wi-Fi routers, which allows an off-path attacker to infer if there is one victim client in the same network communicating with another host on the Internet using TCP. After detecting the presence of TCP connections between the victim client and the server, the attacker can evict the original NAT mapping and reconstruct a new mapping at the router by sending fake TCP packets due to the routers' vulnerability of disabling TCP window tracking strategy, which has been faithfully implemented in most of the routers for years. In this way, the attacker can intercept TCP packets from the server and obtain the current sequence and acknowledgment numbers, which in turn allows the attacker to forcibly close the connection, poison the traffic in plain text, or reroute the server's incoming packets to the attacker.

We test 67 widely used routers from 30 vendors and discover that 52 of them are affected by this attack. Also, we conduct an extensive measurement study on 93 real-world Wi-Fi networks. The experimental results show that 75 of these evaluated Wi-Fi networks (81%) are fully vulnerable to our attack. Our case study shows that it takes about 17.5, 19.4, and 54.5 seconds on average to terminate an SSH connection, download private files from FTP servers, and inject fake HTTP response packets with success rates of 87.4%, 82.6%, and 76.1%. We responsibly disclose the vulnerability and suggest mitigation strategies to all affected vendors and have received positive feedback, including acknowledgments, CVEs, rewards, and adoption of our suggestions.

View More Papers

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More

Flow Correlation Attacks on Tor Onion Service Sessions with...

Daniela Lopes (INESC-ID / IST, Universidade de Lisboa), Jin-Dong Dong (Carnegie Mellon University), Pedro Medeiros (INESC-ID / IST, Universidade de Lisboa), Daniel Castro (INESC-ID / IST, Universidade de Lisboa), Diogo Barradas (University of Waterloo), Bernardo Portela (INESC TEC / Universidade do Porto), João Vinagre (INESC TEC / Universidade do Porto), Bernardo Ferreira (LASIGE, Faculdade de…

Read More

SENSE: Enhancing Microarchitectural Awareness for TEEs via Subscription-Based Notification

Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Read More

The Fault in Our Stars: An Analysis of GitHub...

Simon Koch, David Klein, and Martin Johns (TU Braunschweig)

Read More