Yibin Xu (University of Copenhagen), Jingyi Zheng (University of Copenhagen), Boris Düdder (University of Copenhagen), Tijs Slaats (University of Copenhagen), Yongluan Zhou (University of Copenhagen)

Sharding is a critical technique that enhances the scalability of blockchain technology. However, existing protocols often assume adversarial nodes in a general term without considering the different types of attacks, which limits transaction throughput at runtime because attacks on liveness could be mitigated. There have been attempts to increase transaction throughput by separately handling the attacks; however, they have security vulnerabilities. This paper introduces Reticulum, a novel sharding protocol that overcomes these limitations and achieves enhanced scalability in a blockchain network without security vulnerabilities.

Reticulum employs a two-phase design that dynamically adjusts transaction throughput based on runtime adversarial attacks on either or both liveness and safety. It consists of ‘control’ and ‘process’ shards in two layers corresponding to the two phases. Process shards are subsets of control shards, with each process shard expected to contain at least one honest node with high confidence. Conversely, control shards are expected to have a majority of honest nodes with high confidence. Reticulum leverages unanimous voting in the first phase to involve fewer nodes in accepting/rejecting a block, allowing more parallel process shards. The control shard finalizes the decision made in the first phase and serves as a lifeline to resolve disputes when they surface.

Experiments demonstrate that the unique design of Reticulum empowers high transaction throughput and robustness in the face of different types of attacks in the network, making it superior to existing sharding protocols for blockchain networks.

View More Papers

Separation is Good: A Faster Order-Fairness Byzantine Consensus

Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Read More

Abusing the Ethereum Smart Contract Verification Services for Fun...

Pengxiang Ma (Huazhong University of Science and Technology), Ningyu He (Peking University), Yuhua Huang (Huazhong University of Science and Technology), Haoyu Wang (Huazhong University of Science and Technology), Xiapu Luo (The Hong Kong Polytechnic University)

Read More

FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning Attacks...

Hossein Fereidooni (Technical University of Darmstadt), Alessandro Pegoraro (Technical University of Darmstadt), Phillip Rieger (Technical University of Darmstadt), Alexandra Dmitrienko (University of Wuerzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Attributions for ML-based ICS Anomaly Detection: From Theory to...

Clement Fung (Carnegie Mellon University), Eric Zeng (Carnegie Mellon University), Lujo Bauer (Carnegie Mellon University)

Read More