Gianluca Scopelliti (Ericsson & KU Leuven), Christoph Baumann (Ericsson), Fritz Alder (KU Leuven), Eddy Truyen (KU Leuven), Jan Tobias Mühlberg (Université libre de Bruxelles & KU Leuven)

In Intelligent Transport Systems, secure communication between vehicles, infrastructure, and other road users is critical to maintain road safety. This includes the revocation of cryptographic credentials of misbehaving or malicious vehicles in a timely manner. However, current standards are vague about how revocation should be handled, and recent surveys suggest severe limitations in the scalability and effectiveness of existing revocation schemes. In this paper, we present a formally verified mechanism for self-revocation of Vehicle-to-Everything (V2X) pseudonymous credentials, which relies on a trusted processing element in vehicles but does not require a trusted time source. Our scheme is compatible with ongoing standardization efforts and, leveraging the Tamarin prover, is the first to guarantee the actual revocation of credentials with a predictable upper bound on revocation time and in the presence of realistic attackers. We test our revocation mechanism in a virtual 5G-Edge deployment scenario where a large number of vehicles communicate with each other, simulating real-world conditions such as network malfunctions and delays. Results show that our scheme upholds formal guarantees in practice, while exhibiting low network overhead and good scalability.

View More Papers

Connecting the Dots in the Sky: Website Fingerprinting in...

Prabhjot Singh (University of Waterloo), Diogo Barradas (University of Waterloo), Tariq Elahi (University of Edinburgh), Noura Limam (University of Waterloo)

Read More

Acoustic Keystroke Leakage on Smart Televisions

Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More

Inaudible Adversarial Perturbation: Manipulating the Recognition of User Speech...

Xinfeng Li (Zhejiang University), Chen Yan (Zhejiang University), Xuancun Lu (Zhejiang University), Zihan Zeng (Zhejiang University), Xiaoyu Ji (Zhejiang University), Wenyuan Xu (Zhejiang University)

Read More