Xiangfu Song (National University of Singapore), Dong Yin (Ant Group), Jianli Bai (The University of Auckland), Changyu Dong (Guangzhou University), Ee-Chien Chang (National University of Singapore)

A secret-shared shuffle (SSS) protocol permutes a secret-shared vector using a random secret permutation. It has found numerous applications, however, it is also an expensive operation and often a performance bottleneck. Chase et al. (Asiacrypt'20) recently proposed a highly efficient semi-honest two-party SSS protocol known as the CGP protocol. It utilizes purposely designed pseudorandom correlations that facilitate a communication-efficient online shuffle phase. That said, semi-honest security is insufficient in many real-world application scenarios since shuffle is usually used for highly sensitive applications. Considering this, recent works (CANS'21, NDSS'22) attempted to enhance the CGP protocol with malicious security over authenticated secret sharings. However, we find that these attempts are flawed, and malicious adversaries can still learn private information via malicious deviations. This is demonstrated with concrete attacks proposed in this paper. Then the question is how to fill the gap and design a maliciously secure CGP shuffle protocol. We answer this question by introducing a set of lightweight correlation checks and a leakage reduction mechanism. Then we apply our techniques with authenticated secret sharings to achieve malicious security. Notably, our protocol, while increasing security, is also efficient. In the two-party setting, experiment results show that our maliciously secure protocol introduces an acceptable overhead compared to its semi-honest version and is more efficient than the state-of-the-art maliciously secure SSS protocol from the MP-SPDZ library.

View More Papers

CAGE: Complementing Arm CCA with GPU Extensions

Chenxu Wang (Southern University of Science and Technology (SUSTech) and The Hong Kong Polytechnic University), Fengwei Zhang (Southern University of Science and Technology (SUSTech)), Yunjie Deng (Southern University of Science and Technology (SUSTech)), Kevin Leach (Vanderbilt University), Jiannong Cao (The Hong Kong Polytechnic University), Zhenyu Ning (Hunan University), Shoumeng Yan (Ant Group), Zhengyu He (Ant…

Read More

Pencil: Private and Extensible Collaborative Learning without the Non-Colluding...

Xuanqi Liu (Tsinghua University), Zhuotao Liu (Tsinghua University), Qi Li (Tsinghua University), Ke Xu (Tsinghua University), Mingwei Xu (Tsinghua University)

Read More

An Experimental Study on Attacking Homogeneous Averaging Processes via...

Olsan Ozbay (Dept. ECE, University of Maryland), Yuntao Liu (ISR, University of Maryland), Ankur Srivastava (Dept. ECE, ISR, University of Maryland)

Read More

FirmLine: a Generic Pipeline for Large-Scale Analysis of Non-Linux...

Alexander Balgavy (Independent), Marius Muench (University of Birmingham)

Read More