Tejas Kannan (University of Chicago), Synthia Qia Wang (University of Chicago), Max Sunog (University of Chicago), Abraham Bueno de Mesquita (University of Chicago Laboratory Schools), Nick Feamster (University of Chicago), Henry Hoffmann (University of Chicago)

Smart Televisions (TVs) are internet-connected TVs that support video streaming applications and web browsers. Users enter information into Smart TVs through on-screen virtual keyboards. These keyboards require users to navigate between keys with directional commands from a remote controller. Given the extensive functionality of Smart TVs, users type sensitive information (e.g., passwords) into these devices, making keystroke privacy necessary. This work develops and demonstrates a new side-channel attack that exposes keystrokes from the audio of two popular Smart TVs: Apple and Samsung. This side-channel attack exploits how Smart TVs make different sounds when selecting a key, moving the cursor, and deleting a character. These properties allow an attacker to extract the number of cursor movements between selections from the TV's audio. Our attack uses this extracted information to identify the likeliest typed strings. Against realistic users, the attack finds up to 33.33% of credit card details and 60.19% of common passwords within 100 guesses. This vulnerability has been acknowledged by Samsung and highlights how Smart TVs must better protect sensitive data.

View More Papers

CrowdGuard: Federated Backdoor Detection in Federated Learning

Phillip Rieger (Technical University of Darmstadt), Torsten Krauß (University of Würzburg), Markus Miettinen (Technical University of Darmstadt), Alexandra Dmitrienko (University of Würzburg), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Secure Multiparty Computation of Threshold Signatures Made More Efficient

Harry W. H. Wong (The Chinese University of Hong Kong), Jack P. K. Ma (The Chinese University of Hong Kong), Sherman S. M. Chow (The Chinese University of Hong Kong)

Read More

Vision: “AccessFormer”: Feedback-Driven Access Control Policy

Sakuna Harinda Jayasundara, Nalin Asanka Gamagedara Arachchilage, Giovanni Russello (University of Auckland)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More