Nishit V. Pandya (Indian Institute of Science Bangalore), Himanshu Kumar (Indian Institute of Science Bangalore), Gokulnath M. Pillai (Indian Institute of Science Bangalore), Vinod Ganapathy (Indian Institute of Science Bangalore)

ROS2 is a popular publish/subscribe based middleware that allows developers to build and deploy a wide-variety of distributed robotics applications. Unfortunately, ROS2 offers applications poor control over how their data is consumed by downstream applications.

We present Picaros, a decentralized information-flow control (DIFC) system tailored for ROS2. The decentralized and distributed architecture of ROS2 poses new challenges to building a DIFC system that prior work has not addressed. Picaros adopts a novel approach to address these challenges by casting and solving the problem of DIFC within the framework of attribute-based encryption (ABE). Picaros's design embraces the unique nature of the ROS2 platform and carefully avoids any centralized elements. This paper presents the design and implementation of Picaros and reports on our experiments that use Picaros's ABE-based approach for DIFC with ROS2 applications.

View More Papers

More Lightweight, yet Stronger: Revisiting OSCORE’s Replay Protection

Konrad-Felix Krentz (Uppsala University), Thiemo Voigt (Uppsala University, RISE Computer Science)

Read More

Symphony: Path Validation at Scale

Anxiao He (Zhejiang University), Jiandong Fu (Zhejiang University), Kai Bu (Zhejiang University), Ruiqi Zhou (Zhejiang University), Chenlu Miao (Zhejiang University), Kui Ren (Zhejiang University)

Read More

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions,...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More