Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

A recent large-scale experiment conducted by Chrome has demonstrated that a "quieter" web permission prompt can reduce unwanted interruptions while only marginally affecting grant rates. However, the experiment and the partial roll-out were missing two important elements: (1) an effective and context-aware activation mechanism for such a quieter prompt, and (2) an analysis of user attitudes and sentiment towards such an intervention. In this paper, we address these two limitations by means of a novel ML-based activation mechanism -- and its real-world on-device deployment in Chrome -- and a large-scale user study with 13.1k participants from 156 countries. First, the telemetry-based results, computed on more than 20 million samples from Chrome users in-the-wild, indicate that the novel on-device ML-based approach is both extremely precise (>99% post-hoc precision) and has very high coverage (96% recall for notifications permission). Second, our large-scale, in-context user study shows that quieting is often perceived as helpful and does not cause high levels of unease for most respondents.

View More Papers

NODLINK: An Online System for Fine-Grained APT Attack Detection...

Shaofei Li (Key Laboratory of High-Confidence Software Technologies (MOE), School of Computer Science, Peking University), Feng Dong (Huazhong University of Science and Technology), Xusheng Xiao (Arizona State University), Haoyu Wang (Huazhong University of Science and Technology), Fei Shao (Case Western Reserve University), Jiedong Chen (Sangfor Technologies Inc.), Yao Guo (Key Laboratory of High-Confidence Software Technologies…

Read More

Front-running Attack in Sharded Blockchains and Fair Cross-shard Consensus

Jianting Zhang (Purdue University), Wuhui Chen (Sun Yat-sen University), Sifu Luo (Sun Yat-sen University), Tiantian Gong (Purdue University), Zicong Hong (The Hong Kong Polytechnic University), Aniket Kate (Purdue University)

Read More

LiDAR Spoofing Meets the New-Gen: Capability Improvements, Broken Assumptions,...

Takami Sato (University of California, Irvine), Yuki Hayakawa (Keio University), Ryo Suzuki (Keio University), Yohsuke Shiiki (Keio University), Kentaro Yoshioka (Keio University), Qi Alfred Chen (University of California, Irvine)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More