Ayomide Akinsanya (Stevens Institute of Technology), Tegan Brennan (Stevens Institute of Technology)

Current machine learning systems offer great predictive power but also require significant computational resources. As a result, the promise of a class of optimized machine learning models, called adaptive neural networks (ADNNs), has seen recent wide appeal. These models make dynamic decisions about the amount of computation to perform based on the given input, allowing for fast predictions on ”easy” input. While various considerations of ADNNs have been extensively researched, how these input-dependent optimizations might introduce vulnerabilities has been hitherto under-explored. Our work is the first to demonstrate and evaluate timing channels due to the optimizations of ADNNs with the capacity to leak sensitive attributes about a user’s input. We empirically study six ADNNs types and demonstrate how an attacker can significantly improve their ability to infer sensitive attributes, such as class label, of another user’s input from an observed timing measurement. Our results show that timing information can increase an attacker’s probability of correctly inferring the attribute of the user’s input by up to a factor of 9.89x. Our empirical evaluation uses four different datasets, including those containing sensitive medical and demographic information, and considers leakage across a variety of sensitive attributes of the user's input. We conclude by demonstrating how timing channels can be exploited across the public internet in two fictitious web applications — Fictitious Health Company and Fictitious HR — that makes use of ADNNs for serving predictions to their clients.

View More Papers

Sneaky Spikes: Uncovering Stealthy Backdoor Attacks in Spiking Neural...

Gorka Abad (Radboud University & Ikerlan Technology Research Centre), Oguzhan Ersoy (Radboud University), Stjepan Picek (Radboud University & Delft University of Technology), Aitor Urbieta (Ikerlan Technology Research Centre, Basque Research and Technology Alliance (BRTA))

Read More

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

A Security and Usability Analysis of Local Attacks Against...

Tarun Kumar Yadav (Brigham Young University), Kent Seamons (Brigham Young University)

Read More

Why People Still Fall for Phishing Emails: An Empirical...

Asangi Jayatilaka (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide, School of Computing Technologies, RMIT University), Nalin Asanka Gamagedara Arachchilage (School of Computer Science, The University of Auckland), M. Ali Babar (Centre for Research on Engineering Software Technologies (CREST), The University of Adelaide)

Read More