Jiangrong Wu (Sun Yat-sen University), Yuhong Nan (Sun Yat-sen University), Luyi Xing (Indiana University Bloomington), Jiatao Cheng (Sun Yat-sen University), Zimin Lin (Alibaba Group), Zibin Zheng (Sun Yat-sen University), Min Yang (Fudan University)

Cross-app content sharing is one of the prominent features widely used in mobile apps. For example, a short video from one app can be shared to another (e.g., a messaging app) and further viewed by other users. In many cases, such Cross-app content sharing activities could have privacy implications for both the sharer and sharee, such as exposing app users' personal interests.

In this paper, we provide the first in-depth study on the privacy implications of Cross-app content sharing (as we call Cracs) activities in the mobile ecosystem. Our research showed that during the sharing process, the adversary can not only track and infer user interests as traditional web trackers but also cause other severe privacy implications to app users. More specifically, due to multiple privacy-intrusive designs and implementations of Cracs, an adversary can easily reveal a user's social relations to an outside party, or unnecessarily expose user identities and her associated personal data (e.g., user accounts in another app). Such privacy implications are indeed a concern for app users, as confirmed by a user study we have performed with 300 participants.

To further evaluate the impact of our identified privacy implications at large, we have designed an automatic pipeline named Shark, combined with static analysis and dynamic analysis to effectively identify whether a given app introduces unnecessary data exposure in Cracs. We analyzed 300 top downloaded apps collected from app stores in both the US and China. The analysis results showed that over 55% of the apps from China and 10% from the US are indeed problematic.

View More Papers

On the Vulnerability of Traffic Light Recognition Systems to...

Sri Hrushikesh Varma Bhupathiraju (University of Florida), Takami Sato (University of California, Irvine), Michael Clifford (Toyota Info Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

WIP: Modeling and Detecting Falsified Vehicle Trajectories Under Data...

Jun Ying, Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan and Google)

Read More

Invisible Reflections: Leveraging Infrared Laser Reflections to Target Traffic...

Takami Sato (University of California Irvine), Sri Hrushikesh Varma Bhupathiraju (University of Florida), Michael Clifford (Toyota InfoTech Labs), Takeshi Sugawara (The University of Electro-Communications), Qi Alfred Chen (University of California, Irvine), Sara Rampazzi (University of Florida)

Read More

BGP-iSec: Improved Security of Internet Routing Against Post-ROV Attacks

Cameron Morris (University of Connecticut), Amir Herzberg (University of Connecticut), Bing Wang (University of Connecticut), Samuel Secondo (University of Connecticut)

Read More