Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Effectively mitigating side-channel attacks (SCAs) in Trusted Execution Environments (TEEs) remains challenging despite advances in existing defenses. Current detection-based defenses hinge on observing abnormal victim performance characteristics but struggle to detect attacks leaking smaller portions of the secret across multiple executions. Limitations of existing detection-based defenses stem from various factors, including the absence of a trusted microarchitectural data source in TEEs, low-quality available data, inflexibility of victim responses, and platform-specific constraints. We contend that the primary obstacles to effective detection techniques can be attributed to the lack of direct access to precise microarchitectural information within TEEs.

We propose SENSE, a solution that actively exposes underlying microarchitectural information to userspace TEEs. SENSE enables userspace software in TEEs to subscribe to fine-grained microarchitectural events and utilize the events as a means to contextualize the ongoing microarchitectural states. We initially demonstrate SENSE’s capability by applying it to defeat the state-of-the-art cache-based side-channel attacks. We conduct a comprehensive security analysis to ensure that SENSE does not leak more information than a system without it does. We prototype SENSE on a gem5-based emulator, and our evaluation shows that SENSE is secure, can effectively defeats cache SCAs, and incurs negligible performance overhead (1.2%) under benign situations.

View More Papers

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

SLMIA-SR: Speaker-Level Membership Inference Attacks against Speaker Recognition Systems

Guangke Chen (ShanghaiTech University), Yedi Zhang (National University of Singapore), Fu Song (Institute of Software, Chinese Academy of Sciences; University of Chinese Academy of Sciences)

Read More

Towards Automated Regulation Analysis for Effective Privacy Compliance

Sunil Manandhar (IBM T.J. Watson Research Center), Kapil Singh (IBM T.J. Watson Research Center), Adwait Nadkarni (William & Mary)

Read More