Fan Sang (Georgia Institute of Technology), Jaehyuk Lee (Georgia Institute of Technology), Xiaokuan Zhang (George Mason University), Meng Xu (University of Waterloo), Scott Constable (Intel), Yuan Xiao (Intel), Michael Steiner (Intel), Mona Vij (Intel), Taesoo Kim (Georgia Institute of Technology)

Effectively mitigating side-channel attacks (SCAs) in Trusted Execution Environments (TEEs) remains challenging despite advances in existing defenses. Current detection-based defenses hinge on observing abnormal victim performance characteristics but struggle to detect attacks leaking smaller portions of the secret across multiple executions. Limitations of existing detection-based defenses stem from various factors, including the absence of a trusted microarchitectural data source in TEEs, low-quality available data, inflexibility of victim responses, and platform-specific constraints. We contend that the primary obstacles to effective detection techniques can be attributed to the lack of direct access to precise microarchitectural information within TEEs.

We propose SENSE, a solution that actively exposes underlying microarchitectural information to userspace TEEs. SENSE enables userspace software in TEEs to subscribe to fine-grained microarchitectural events and utilize the events as a means to contextualize the ongoing microarchitectural states. We initially demonstrate SENSE’s capability by applying it to defeat the state-of-the-art cache-based side-channel attacks. We conduct a comprehensive security analysis to ensure that SENSE does not leak more information than a system without it does. We prototype SENSE on a gem5-based emulator, and our evaluation shows that SENSE is secure, can effectively defeats cache SCAs, and incurs negligible performance overhead (1.2%) under benign situations.

View More Papers

DEMASQ: Unmasking the ChatGPT Wordsmith

Kavita Kumari (Technical University of Darmstadt, Germany), Alessandro Pegoraro (Technical University of Darmstadt), Hossein Fereidooni (Technische Universität Darmstadt), Ahmad-Reza Sadeghi (Technical University of Darmstadt)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

The CURE to Vulnerabilities in RPKI Validation

Donika Mirdita (Technische Universität Darmstadt), Haya Schulmann (Goethe-Universität Frankfurt), Niklas Vogel (Goethe-Universität Frankfurt), Michael Waidner (Technische Universität Darmstadt, Fraunhofer SIT)

Read More

WIP: Towards a Certifiably Robust Defense for Multi-label Classifiers...

Dennis Jacob, Chong Xiang, Prateek Mittal (Princeton University)

Read More