Gelei Deng (Nanyang Technological University), Yi Liu (Nanyang Technological University), Yuekang Li (University of New South Wales), Kailong Wang (Huazhong University of Science and Technology), Ying Zhang (Virginia Tech), Zefeng Li (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), Tianwei Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University)

Large language models (LLMs), such as chatbots, have made significant strides in various fields but remain vulnerable to jailbreak attacks, which aim to elicit inappropriate responses. Despite efforts to identify these weaknesses, current strategies are ineffective against mainstream LLM chatbots, mainly due to undisclosed defensive measures by service providers. Our paper introduces MASTERKEY, a framework exploring the dynamics of jailbreak attacks and countermeasures. We present a novel method based on time-based characteristics to dissect LLM chatbot defenses. This technique, inspired by time-based SQL injection, uncovers the workings of these defenses and demonstrates a proof-of-concept attack on several LLM chatbots.

Additionally, MASTERKEY features an innovative approach for automatically generating jailbreak prompts that target well-defended LLM chatbots. By fine-tuning an LLM with jailbreak prompts, we create attacks with a 21.58% success rate, significantly higher than the 7.33% achieved by existing methods. We have informed service providers of these findings, highlighting the urgent need for stronger defenses. This work not only reveals vulnerabilities in LLMs but also underscores the importance of robust defenses against such attacks.

View More Papers

Under Pressure: Effectiveness and Usability of the Apple Pencil...

Elina van Kempen, Zane Karl, Richard Deamicis, Qi Alfred Chen (UC Irivine)

Read More

Compromising Industrial Processes using Web-Based Programmable Logic Controller Malware

Ryan Pickren (Georgia Institute of Technology), Tohid Shekari (Georgia Institute of Technology), Saman Zonouz (Georgia Institute of Technology), Raheem Beyah (Georgia Institute of Technology)

Read More

FP-Fed: Privacy-Preserving Federated Detection of Browser Fingerprinting

Meenatchi Sundaram Muthu Selva Annamalai (University College London), Igor Bilogrevic (Google), Emiliano De Cristofaro (University of California, Riverside)

Read More

ActiveDaemon: Unconscious DNN Dormancy and Waking Up via User-specific...

Ge Ren (Shanghai Jiao Tong University), Gaolei Li (Shanghai Jiao Tong University), Shenghong Li (Shanghai Jiao Tong University), Libo Chen (Shanghai Jiao Tong University), Kui Ren (Zhejiang University)

Read More