Meenatchi Sundaram Muthu Selva Annamalai (University College London), Igor Bilogrevic (Google), Emiliano De Cristofaro (University of California, Riverside)

Browser fingerprinting often provides an attractive alternative to third-party cookies for tracking users across the web. In fact, the increasing restrictions on third-party cookies placed by common web browsers and recent regulations like the GDPR may accelerate the transition. To counter browser fingerprinting, previous work proposed a number of techniques to detect its prevalence and severity. However, most – if not all – of those techniques rely on 1) centralized web crawls and/or 2) computationally-intensive operations to extract and process signals (e.g., information-flow and static analysis).

To address these limitations, we present FP-Fed, the first distributed system for browser fingerprinting detection. Using FP-Fed, users collaboratively train on-device models based on their real browsing patterns, without sharing their training data with a central entity, by relying on Differentially Private Federated Learning (DP-FL). To demonstrate its feasibility and effectiveness, we evaluate FP-Fed’s performance on a set of 20k popular websites with different privacy levels, numbers of participants, and features extracted from the scripts. Our experiments show that FP-Fed achieves reasonably high detection performance and can perform both training and inference efficiently, on-device, by only relying on runtime signals extracted from the execution trace, without requiring any resource-intensive operation.

View More Papers

CAN-MIRGU: A Comprehensive CAN Bus Attack Dataset from Moving...

Sampath Rajapaksha, Harsha Kalutarage (Robert Gordon University, UK), Garikayi Madzudzo (Horiba Mira Ltd, UK), Andrei Petrovski (Robert Gordon University, UK), M.Omar Al-Kadri (University of Doha for Science and Technology)

Read More

Aligning Confidential Computing with Cloud-native ML Platforms

Angelo Ruocco, Chris Porter, Claudio Carvalho, Daniele Buono, Derren Dunn, Hubertus Franke, James Bottomley, Marcio Silva, Mengmei Ye, Niteesh Dubey, Tobin Feldman-Fitzthum (IBM Research)

Read More

AVMON: Securing Autonomous Vehicles by Learning Control Invariants and...

Ahmed Abdo, Sakib Md Bin Malek, Xuanpeng Zhao, Nael Abu-Ghazaleh (University of California, Riverside)

Read More