Meenatchi Sundaram Muthu Selva Annamalai (University College London), Igor Bilogrevic (Google), Emiliano De Cristofaro (University of California, Riverside)

Browser fingerprinting often provides an attractive alternative to third-party cookies for tracking users across the web. In fact, the increasing restrictions on third-party cookies placed by common web browsers and recent regulations like the GDPR may accelerate the transition. To counter browser fingerprinting, previous work proposed a number of techniques to detect its prevalence and severity. However, most – if not all – of those techniques rely on 1) centralized web crawls and/or 2) computationally-intensive operations to extract and process signals (e.g., information-flow and static analysis).

To address these limitations, we present FP-Fed, the first distributed system for browser fingerprinting detection. Using FP-Fed, users collaboratively train on-device models based on their real browsing patterns, without sharing their training data with a central entity, by relying on Differentially Private Federated Learning (DP-FL). To demonstrate its feasibility and effectiveness, we evaluate FP-Fed’s performance on a set of 20k popular websites with different privacy levels, numbers of participants, and features extracted from the scripts. Our experiments show that FP-Fed achieves reasonably high detection performance and can perform both training and inference efficiently, on-device, by only relying on runtime signals extracted from the execution trace, without requiring any resource-intensive operation.

View More Papers

Investigating the Impact of Evasion Attacks Against Automotive Intrusion...

Paolo Cerracchio, Stefano Longari, Michele Carminati, Stefano Zanero (Politecnico di Milano)

Read More

Binary Code Patching: An Ancient Art Refined for the...

Dr. Barton P. Miller (Vilas Distinguished Achievement Professor at The University of Wisconsin-Madison)

Read More

Content Censorship in the InterPlanetary File System

Srivatsan Sridhar (Stanford University), Onur Ascigil (Lancaster University), Navin Keizer (University College London), François Genon (UCLouvain), Sébastien Pierre (UCLouvain), Yiannis Psaras (Protocol Labs), Etienne Riviere (UCLouvain), Michał Król (City, University of London)

Read More

WIP: Towards Practical LiDAR Spoofing Attack against Vehicles Driving...

Ryo Suzuki (Keio University), Takami Sato (University of California, Irvine), Yuki Hayakawa, Kazuma Ikeda, Ozora Sako, Rokuto Nagata (Keio University), Qi Alfred Chen (University of California, Irvine), Kentaro Yoshioka (Keio University)

Read More