Minhyeok Kang (Seoul National University), Weitong Li (Virginia Tech), Roland van Rijswijk-Deij (University of Twente), Ted "Taekyoung" Kwon (Seoul National University), Taejoong Chung (Virginia Tech)

Border Gateway Protocol (BGP) provides a way of exchanging routing information to help routers construct their routing tables. However, due to the lack of security considerations, BGP has been suffering from vulnerabilities such as BGP hijacking attacks. To mitigate these issues, two data sources have been used, Internet Routing Registry (IRR) and Resource Public Key Infrastructure (RPKI), to provide reliable mappings between IP prefixes and their authorized Autonomous Systems (ASes). Each of the data sources, however, has its own limitations. IRR has been well-known for its stale Route objects with outdated AS information since network operators do not have enough incentives to keep them up to date, and RPKI has been slowly deployed due to its operational complexities. In this paper, we measure the prevalent inconsistencies between Route objects in IRR and ROA objects in RPKI. We next characterize inconsistent and consistent Route objects, respectively, by focusing on their BGP announcement patterns. Based on this insight, we develop a technique that identifies stale Route objects by leveraging a machine learning algorithm and evaluate its performance. From real trace-based experiments, we show that our technique can offer advantages against the status quo by reducing the percentage of potentially stale Route objects from 72% to 40% (of the whole IRR Route objects). In this way, we achieve 93% of the accuracy of validating BGP announcements while covering 87% of BGP announcements.

View More Papers

WIP: Auditing Artist Style Pirate in Text-to-image Generation Models

Linkang Du (Zhejiang University), Zheng Zhu (Zhejiang University), Min Chen (CISPA Helmholtz Center for Information Security), Shouling Ji (Zhejiang University), Peng Cheng (Zhejiang University), Jiming Chen (Zhejiang University), Zhikun Zhang (Stanford University)

Read More

Evaluating Disassembly Ground Truth Through Dynamic Tracing (abstract)

Lambang Akbar (National University of Singapore), Yuancheng Jiang (National University of Singapore), Roland H.C. Yap (National University of Singapore), Zhenkai Liang (National University of Singapore), Zhuohao Liu (National University of Singapore)

Read More

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More

Towards Precise Reporting of Cryptographic Misuses

Yikang Chen (The Chinese University of Hong Kong), Yibo Liu (Arizona State University), Ka Lok Wu (The Chinese University of Hong Kong), Duc V Le (Visa Research), Sze Yiu Chau (The Chinese University of Hong Kong)

Read More