Haohuang Wen (The Ohio State University), Phillip Porras (SRI International), Vinod Yegneswaran (SRI International), Ashish Gehani (SRI International), Zhiqiang Lin (The Ohio State University)

Over the past several years, the mobile security community has discovered a wide variety of exploits against link and session-establishment protocols. These exploits can be implemented on software-defined radios (SDRs) that disrupt, spoof, or flood layer-3 (L3) messages to compromise security and privacy, which still apply to the latest 5G mobile network standard. Interestingly, unlike the prior generations of closed (proprietary) mobile network infrastructures, 5G networks are migrating toward a more intelligent and open-standards-based fully interoperable mobile architecture, called Open RAN or O-RAN. The implications of transitioning mobile infrastructures to a software-defined architectural abstraction are quite significant to the INFOSEC community, as it allows us to extend the mobile data plane and control plane with security-focused protocol auditing services and exploit detection. Based on this design, we present 5G-SPECTOR, the first comprehensive framework for detecting the wide spectrum of L3 protocol exploits on O-RAN. It features a novel security audit stream called MOBIFLOW that transfers fine-grained cellular network telemetry, and a programmable control-plane xApp called MOBIEXPERT. We present an extensible prototype of 5G-SPECTOR which can detect 7 types of cellular attacks in real time. We also demonstrate its scalability to 11 unknown attacks as well as 31 real-world cellular traces, with effective performance (high accuracy, no false alarms) and low (<2% CPU, <100 MB memory) overhead.

View More Papers

Gradient Shaping: Enhancing Backdoor Attack Against Reverse Engineering

Rui Zhu (Indiana University Bloominton), Di Tang (Indiana University Bloomington), Siyuan Tang (Indiana University Bloomington), Zihao Wang (Indiana University Bloomington), Guanhong Tao (Purdue University), Shiqing Ma (University of Massachusetts Amherst), XiaoFeng Wang (Indiana University Bloomington), Haixu Tang (Indiana University, Bloomington)

Read More

DeepGo: Predictive Directed Greybox Fuzzing

Peihong Lin (National University of Defense Technology), Pengfei Wang (National University of Defense Technology), Xu Zhou (National University of Defense Technology), Wei Xie (National University of Defense Technology), Gen Zhang (National University of Defense Technology), Kai Lu (National University of Defense Technology)

Read More

Eavesdropping on Controller Acoustic Emanation for Keystroke Inference Attack...

Shiqing Luo (George Mason University), Anh Nguyen (George Mason University), Hafsa Farooq (Georgia State University), Kun Sun (George Mason University), Zhisheng Yan (George Mason University)

Read More

Don't Interrupt Me – A Large-Scale Study of On-Device...

Marian Harbach (Google), Igor Bilogrevic (Google), Enrico Bacis (Google), Serena Chen (Google), Ravjit Uppal (Google), Andy Paicu (Google), Elias Klim (Google), Meggyn Watkins (Google), Balazs Engedy (Google)

Read More