Hugo Kermabon-Bobinnec (Concordia University), Yosr Jarraya (Ericsson Security Research), Lingyu Wang (Concordia University), Suryadipta Majumdar (Concordia University), Makan Pourzandi (Ericsson Security Research)

Known, but unpatched vulnerabilities represent one of the most concerning threats for businesses today. The average time-to-patch of zero-day vulnerabilities remains around 100 days in recent years. The lack of means to mitigate an unpatched vulnerability may force businesses to temporarily shut down their services, which can lead to significant financial loss. Existing solutions for filtering system calls unused by a container can effectively reduce the general attack surface, but cannot prevent a specific vulnerability that shares the same system calls with the container. On the other hand, existing provenance analysis solutions can help identify a sequence of system calls behind the vulnerability, although they do not provide a direct solution for filtering such a sequence. To bridge such a research gap, we propose Phoenix, a solution for preventing exploits of unpatched vulnerabilities by accurately and efficiently filtering sequences of system calls identified through provenance analysis. To achieve this, Phoenix cleverly combines the efficiency of Seccomp filters with the accuracy of Ptrace-based deep argument inspection, and it provides the novel capability of filtering system call sequences through a dynamic Seccomp design. Our implementation and experiments show that Phoenix can effectively mitigate real-world vulnerabilities which evade existing solutions, while introducing negligible delay (less than 4%) and less overhead (e.g., 98% less CPU consumption than existing solution).

View More Papers

UntrustIDE: Exploiting Weaknesses in VS Code Extensions

Elizabeth Lin (North Carolina State University), Igibek Koishybayev (North Carolina State University), Trevor Dunlap (North Carolina State University), William Enck (North Carolina State University), Alexandros Kapravelos (North Carolina State University)

Read More

AnonPSI: An Anonymity Assessment Framework for PSI

Bo Jiang (TikTok Inc.), Jian Du (TikTok Inc.), Qiang Yan (TikTok Inc.)

Read More

MASTERKEY: Automated Jailbreaking of Large Language Model Chatbots

Gelei Deng (Nanyang Technological University), Yi Liu (Nanyang Technological University), Yuekang Li (University of New South Wales), Kailong Wang (Huazhong University of Science and Technology), Ying Zhang (Virginia Tech), Zefeng Li (Nanyang Technological University), Haoyu Wang (Huazhong University of Science and Technology), Tianwei Zhang (Nanyang Technological University), Yang Liu (Nanyang Technological University)

Read More

ReqsMiner: Automated Discovery of CDN Forwarding Request Inconsistencies and...

Linkai Zheng (Tsinghua University), Xiang Li (Tsinghua University), Chuhan Wang (Tsinghua University), Run Guo (Tsinghua University), Haixin Duan (Tsinghua University; Quancheng Laboratory), Jianjun Chen (Tsinghua University; Zhongguancun Laboratory), Chao Zhang (Tsinghua University; Zhongguancun Laboratory), Kaiwen Shen (Tsinghua University)

Read More