Ke Mu (Southern University of Science and Technology, China), Bo Yin (Changsha University of Science and Technology, China), Alia Asheralieva (Loughborough University, UK), Xuetao Wei (Southern University of Science and Technology, China & Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, SUSTech, China)

Order-fairness has been introduced recently as a new property for Byzantine Fault-Tolerant (BFT) consensus protocol to prevent unilaterally deciding the final order of transactions, which allows mitigating the threat of adversarial transaction order manipulation attacks (e.g., front-running) in blockchain networks and decentralized finance (DeFi). However, existing leader-based order-fairness protocols (which do not rely on synchronized clocks) still suffer from poor performance since they strongly couple fair ordering with consensus processes. In this paper, we propose SpeedyFair, a high-performance order-fairness consensus protocol, which is motivated by our insight that the ordering of transactions does not rely on the execution results of transactions in previous proposals (after consensus). SpeedyFair achieves its efficiency through a decoupled design that performs fair ordering individually and consecutively, separating from consensus. In addition, by decoupling fair ordering from consensus, SpeedyFair enables parallelizing the order/verify mode that was originally executed serially in the consensus process, which further speeds up the performance. We implement a prototype of SpeedyFair on the top of the Hotstuff protocol. Extensive experimental results demonstrate that SpeedyFair significantly outperforms the state-of-the-art order-fairness protocol (i.e., Themis), which achieves a throughput of 1.5×-2.45× greater than Themis while reducing latency by 35%-59%.

View More Papers

MPCDiff: Testing and Repairing MPC-Hardened Deep Learning Models

Qi Pang (Carnegie Mellon University), Yuanyuan Yuan (HKUST), Shuai Wang (HKUST)

Read More

Security Attacks to the Name Management Protocol in Vehicular...

Sharika Kumar (The Ohio State University), Imtiaz Karim, Elisa Bertino (Purdue University), Anish Arora (Ohio State University)

Read More

Designing and Evaluating a Testbed for the Matter Protocol:...

Ravindra Mangar (Dartmouth College) Jingyu Qian (University of Illinois), Wondimu Zegeye (Morgan State University), Abdulrahman AlRabah, Ben Civjan, Shalni Sundram, Sam Yuan, Carl A. Gunter (University of Illinois), Mounib Khanafer (American University of Kuwait), Kevin Kornegay (Morgan State University), Timothy J. Pierson, David Kotz (Dartmouth College)

Read More

Measuring the Prevalence of Password Manager Issues Using In-Situ...

Adryana Hutchinson (The George Washington University), Jinwei Tang (Clark University), Adam Aviv (The George Washington University), Peter Story (Clark University)

Read More